
Bundlor User Guide
Ben Hale

Glyn Normington
Juliet Shackell

1.1.2.RELEASE

Table of Contents
Copyright ..iv
License ..v
1. Introduction to Bundlor ...1

1.1. About Bundlor ...1
2. Getting Bundlor ..2

2.1. Getting the Bundlor ZIP ...2
2.2. Getting Bundlor with Ivy ..2
2.3. Getting Bundlor with Maven ...2

3. Quickstart ...4
3.1. Command Line Quickstart ..4
3.2. Apache ANT Quickstart ...4
3.3. Apache Maven Quickstart ...5

4. Usage ...6
4.1. Command-Line Usage ..6

Command Syntax ...6
Command Line Reference ...6

Command Line Parameters ...6
Command Line Property Values ..7

4.2. Apache ANT Usage ...7
ANT Setup ...7
ANT Task Reference ..8

Task Attributes ...8
Inline Manifest Template ..9
Inline OSGi Profile ...10
Inline Property Values ..10

ANT Task Examples ...10
Creating a manifest ...10
Creating a manifest with placeholder replacement ...11

4.3. Apache Maven Usage ...11
Maven Setup ..11
Maven Plugin Reference ...12

Plugin Configuration ...12
Inline Manifest Template ..13
Inline OSGi Profile ...13
Inline Property Values ..14

Maven Plugin Examples ..14
Creating a manifest ...14
Creating a manifest with placeholder replacement ...15

5. Manifest Templates ...16
5.1. Introduction ...16

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide ii

5.2. Manifest Template Format ..16
5.3. Specifying property placeholders ..17
5.4. Specifying automatic version expansion of imported packages based on a pattern18

Re-using version patterns ..19
5.5. Example Bundlor Manifest Template ..20

6. OSGi Profiles and Bundlor ..22
6.1. Overview of OSGi profiles ...22
6.2. Using OSGi profiles with Bundlor ...22

7. Detecting Manifest Requirements ..24
7.1. Java Detection Criteria ...24

Export Package ..24
Import Package ..24

7.2. Spring Context Configuration Detection Criteria ..25
Spring Context Values ..25

7.3. Blueprint Service Configuration Detection Criteria ...26
Blueprint Configuration Values ...26

7.4. Web Application File Detection Criteria ..27
web.xml Values ..27

7.5. Bundle-Classpath File Detection Criteria ...28
7.6. JPA Detection Criteria ..28

persistence.xml Values ..28
orm.xml Values ..28

7.7. EclipseLink Detection Criteria ..29
eclipselink-orm.xml Values ...29

7.8. Hibernate Mapping File Detection Criteria ...31
Hibernate Attributes ..31
Hibernate Keywords ...32

7.9. JSP File Detection Criteria ..34
JSP Values ...34

7.10. Log4J Configuration Detection Criteria ...34
Log4J Configuration Values ..34

7.11. Static Resource Detection Criteria ...34
8. Detecting Manifest Issues ..35

8.1. Import Version Range Warning Criteria ...35
8.2. Import of Exported Packages Warning Criteria ..35
8.3. Signed JAR Warning Criteria ..35
8.4. Versioned Imports Warning Criteria ..35
8.5. Versioned Exports Warning Criteria ..35
8.6. Bundle-SymbolicName Warning Criteria ...35
8.7. Manifest-Version Warning Criteria ...35

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide iii

Copyright
Copyright 2008-2012, VMware Inc.

Licensed Under the terms and conditions of the Eclipse Public License Version 1.0 ("EPL"). A copy of
the EPL is available at http://www.eclipse.org/legal/epl-v10.html.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide iv

http://www.eclipse.org/legal/epl-v10.html

License

Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE
PUBLIC LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS
AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial
code and documentation distributed under this Agreement, and
b) in the case of each subsequent Contributor:
i) changes to the Program, and
ii) additions to the Program;
where such changes and/or additions to the Program

originate from and are distributed by that particular Contributor. A
Contribution 'originates' from a Contributor if it was added to the
Program by such Contributor itself or anyone acting on such
Contributor's behalf. Contributions do not include additions to the
Program which: (i) are separate modules of software distributed in
conjunction with the Program under their own license agreement, and (ii)
are not derivative works of the Program.

"Contributor" means any person or entity that distributes
the Program.

"Licensed Patents" mean patent claims licensable by a
Contributor which are necessarily infringed by the use or sale of its
Contribution alone or when combined with the Program.

"Program" means the Contributions distributed in accordance
with this Agreement.

"Recipient" means anyone who receives the Program under
this Agreement, including all Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each
Contributor hereby grants Recipient a non-exclusive, worldwide,
royalty-free copyright license to reproduce, prepare derivative works
of, publicly display, publicly perform, distribute and sublicense the
Contribution of such Contributor, if any, and such derivative works, in
source code and object code form.

b) Subject to the terms of this Agreement, each
Contributor hereby grants Recipient a non-exclusive, worldwide,
royalty-free patent license under Licensed Patents to make, use, sell,
offer to sell, import and otherwise transfer the Contribution of such
Contributor, if any, in source code and object code form. This patent
license shall apply to the combination of the Contribution and the
Program if, at the time the Contribution is added by the Contributor,
such addition of the Contribution causes such combination to be covered
by the Licensed Patents. The patent license shall not apply to any other
combinations which include the Contribution. No hardware per se is
licensed hereunder.

c) Recipient understands that although each Contributor
grants the licenses to its Contributions set forth herein, no assurances

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide v

are provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each
Contributor disclaims any liability to Recipient for claims brought by
any other entity based on infringement of intellectual property rights
or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility to
secure any other intellectual property rights needed, if any. For
example, if a third party patent license is required to allow Recipient
to distribute the Program, it is Recipient's responsibility to acquire
that license before distributing the Program.

d) Each Contributor represents that to its knowledge it
has sufficient copyright rights in its Contribution, if any, to grant
the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code
form under its own license agreement, provided that:

a) it complies with the terms and conditions of this
Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied, including warranties
or conditions of title and non-infringement, and implied warranties or
conditions of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors
all liability for damages, including direct, indirect, special,
incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this
Agreement are offered by that Contributor alone and not by any other
party; and

iv) states that source code for the Program is available
from such Contributor, and informs licensees how to obtain it in a
reasonable manner on or through a medium customarily used for software
exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each
copy of the Program.

Contributors may not remove or alter any copyright notices contained
within the Program.

Each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows subsequent
Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain
responsibilities with respect to end users, business partners and the
like. While this license is intended to facilitate the commercial use of
the Program, the Contributor who includes the Program in a commercial
product offering should do so in a manner which does not create
potential liability for other Contributors. Therefore, if a Contributor
includes the Program in a commercial product offering, such Contributor
("Commercial Contributor") hereby agrees to defend and

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide vi

indemnify every other Contributor ("Indemnified Contributor")
against any losses, damages and costs (collectively "Losses")
arising from claims, lawsuits and other legal actions brought by a third
party against the Indemnified Contributor to the extent caused by the
acts or omissions of such Commercial Contributor in connection with its
distribution of the Program in a commercial product offering. The
obligations in this section do not apply to any claims or Losses
relating to any actual or alleged intellectual property infringement. In
order to qualify, an Indemnified Contributor must: a) promptly notify
the Commercial Contributor in writing of such claim, and b) allow the
Commercial Contributor to control, and cooperate with the Commercial
Contributor in, the defense and any related settlement negotiations. The
Indemnified Contributor may participate in any such claim at its own
expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial
Contributor. If that Commercial Contributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Contributor's responsibility
alone. Under this section, the Commercial Contributor would have to
defend claims against the other Contributors related to those
performance claims and warranties, and if a court requires any other
Contributor to pay any damages as a result, the Commercial Contributor
must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION,
ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely
responsible for determining the appropriateness of using and
distributing the Program and assumes all risks associated with its
exercise of rights under this Agreement , including but not limited to
the risks and costs of program errors, compliance with applicable laws,
damage to or loss of data, programs or equipment, and unavailability or
interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT
NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further action
by the parties hereto, such provision shall be reformed to the minimum
extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the
Program itself (excluding combinations of the Program with other
software or hardware) infringes such Recipient's patent(s), then such
Recipient's rights granted under Section 2(b) shall terminate as of the
date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide vii

fails to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of time
after becoming aware of such noncompliance. If all Recipient's rights
under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However,
Recipient's obligations under this Agreement and any licenses granted by
Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this
Agreement, but in order to avoid inconsistency the Agreement is
copyrighted and may only be modified in the following manner. The
Agreement Steward reserves the right to publish new versions (including
revisions) of this Agreement from time to time. No one other than the
Agreement Steward has the right to modify this Agreement. The Eclipse
Foundation is the initial Agreement Steward. The Eclipse Foundation may
assign the responsibility to serve as the Agreement Steward to a
suitable separate entity. Each new version of the Agreement will be
given a distinguishing version number. The Program (including
Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version
of the Agreement is published, Contributor may elect to distribute the
Program (including its Contributions) under the new version. Except as
expressly stated in Sections 2(a) and 2(b) above, Recipient receives no
rights or licenses to the intellectual property of any Contributor under
this Agreement, whether expressly, by implication, estoppel or
otherwise. All rights in the Program not expressly granted under this
Agreement are reserved.

This Agreement is governed by the laws of the State of New York and
the intellectual property laws of the United States of America. No party
to this Agreement will bring a legal action under this Agreement more
than one year after the cause of action arose. Each party waives its
rights to a jury trial in any resulting litigation.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide viii

1. Introduction to Bundlor

1.1 About Bundlor

With the increasing focus on OSGi in Enterprise Java, there has been increasing focus on creating OSGi
bundles for deployment. When a development team is creating their own bundles, bundlor simplifies the
creation and maintenance of the OSGi metadata of each bundle.

Bundlor also helps in the use of third-party enterprise libraries, many of which are not packaged as OSGi
bundles. In this case, developers must add OSGi metadata to the library before use.

Bundlor helps in both these scenarios. It can be very hard for developers to keep track of the
dependencies needed by a JAR file. Bundlor is a tool that automates the detection of dependencies and
the creation of OSGi manifest directives for JARs after their creation. Bundlor takes as input a JAR and a
template consisting of a superset of the standard OSGi manifest headers. Bundlor analyses the source
code and support files contained in the JAR, applies the template to the results, and generates a manifest.

The use of Bundlor can take different forms, from an Apache ANT task and an Apache Maven plugin, to
simple command line execution.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 1

2. Getting Bundlor

2.1 Getting the Bundlor ZIP

Eclipse Virgo Bundlor is distributed as a ZIP file.

1. Download the ZIP file from the Virgo download page.

The Virgo download page is located at http://www.eclipse.org/virgo/download/.

2.2 Getting Bundlor with Ivy

Eclipse Virgo Bundlor can be obtained from an Ivy repository.

1. Add the Virgo resolver to the ivysettings.xml file

<url name="eclipse.virgo.build.read.resolver">
<ivy pattern="http://build.eclipse.org/rt/virgo/ivy/bundles/release/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"/>
<artifact pattern="http://build.eclipse.org/rt/virgo/ivy/bundles/release/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"/>

</url>

2. Download the Eclipse Virgo Bundlor dependency in the build.xml file

<ivy:cachepath resolveId="bundlor.classpath" pathid="bundlor.classpath" organisation="org.eclipse.virgo.bundlor"
module="org.eclipse.virgo.bundlor.ant" revision="1.1.2.RELEASE" conf="ant" inline="true"
type="jar" log="download-only"/>

2.3 Getting Bundlor with Maven

Eclipse Virgo Bundlor can be obtained from a Maven repository.

1. Add the Eclipse Virgo build and SpringSource Enterprise Bundle Repository resolvers to the
pom.xml file

<repository>
<id>eclipse.virgo.build.bundles.release</id>
<name>Eclipse Virgo Build</name>
<url>http://build.eclipse.org/rt/virgo/maven/bundles/release</url>

</repository>
<repository>
<id>com.springsource.repository.bundles.external</id>
<name>SpringSource Enterprise Bundle Repository - External Bundle Releases</name>
<url>http://repository.springsource.com/maven/bundles/external</url>

</repository>

2. Add a dependency to the pom.xml file

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 2

http://www.eclipse.org/virgo/download/

<dependencies>
<dependency>

<groupId>org.eclipse.virgo.bundlor</groupId>
<artifactId>org.eclipse.virgo.bundlor.maven</artifactId>
<version>1.1.2.RELEASE</version>
<scope>compile</scope>

</dependency>
</dependencies>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 3

3. Quickstart

3.1 Command Line Quickstart

The command line client allows Bundlor to be run from the command line.

1. Change directory to the $BUNDLOR_HOME/bin directory where $BUNDLOR_HOME is a directory
into which the bundlor ZIP file distribution has been unzipped.

2. Run bundlor.sh or bundlor.bat scripts. See Section 4.1, “Command-Line Usage” for details.

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar

Transformed bundle written to ./target/org.springframework.integration.jar
%

3.2 Apache ANT Quickstart

The ANT task allows Bundlor to be run from inside any ANT based build system.

1. Define a bundlor namespace

<project name="bundlor-sample-ant"
xmlns:bundlor="antlib:org.eclipse.virgo.bundlor.ant">

2. Import the bundlor task into your build

<target name="bundlor.init">
<ivy:cachepath resolveId="bundlor.classpath" pathid="bundlor.classpath" organisation="org.eclipse.virgo.bundlor"

module="org.eclipse.virgo.bundlor.ant" revision="1.1.2.RELEASE" conf="ant" inline="true"
type="jar" log="download-only"/>

<taskdef resource="org/eclipse/virgo/bundlor/ant/antlib.xml" uri="antlib:org.eclipse.virgo.bundlor.ant"
classpathref="bundlor.classpath"/>

</target>

3. Use the bundlor task. See Section 4.2, “Apache ANT Usage” for details about the parameters of the
task.

<bundlor:bundlor
inputPath="${basedir}/target/classes"
outputPath="${basedir}/target/classes"
bundleVersion="1.0.2.BUILD-${timestamp}"
manifestTemplatePath="${basedir}/template.mf"/>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 4

3.3 Apache Maven Quickstart

The Maven plugin allows Bundlor to be run from inside any Maven project.

1. Add the Eclipse Virgo build and SpringSource Enterprise Bundle Repository to the pom.xml file

<pluginRepositories>
<pluginRepository>

<id>eclipse.virgo.build.bundles.release</id>
<name>Eclipse Virgo Build</name>
<url>http://build.eclipse.org/rt/virgo/maven/bundles/release</url>

</pluginRepository>
<pluginRepository>

<id>com.springsource.repository.bundles.external</id>
<name>SpringSource Enterprise Bundle Repository - External Bundle Releases</name>
<url>http://repository.springsource.com/maven/bundles/external</url>

</pluginRepository>
...

</pluginRepositories>

2. Use the bundlor plugin in the pom.xml file. See Section 4.3, “Apache Maven Usage” for details
about the parameters of the plugin.

<build>
<plugins>

<plugin>
<groupId>org.eclipse.virgo.bundlor</groupId>
<artifactId>org.eclipse.virgo.bundlor.maven</artifactId>
<version>1.1.2.RELEASE</version>
<executions>
<execution>

<id>bundlor</id>
<goals>
<goal>bundlor</goal>

</goals>
</execution>

</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>

<manifestFile>
target/classes/META-INF/MANIFEST.MF

</manifestFile>
</archive>

</configuration>
</plugin>
...

</plugins>
...

</build>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 5

4. Usage

4.1 Command-Line Usage

The command line client allows Bundlor to be run from the command line of any platform

Command Syntax

To use Bundlor run the following for UNIX and Windows respectively.

$BUNDLOR_HOME/bin/bundlor.sh [options]

%BUNDLOR_HOME%\bin\bundlor.bat [options]

Command Line Reference

Command Line Parameters

The following table lists all the parameters that you can specify for the bundlor command line client.

Table 4.1. Attributes

Attribute Description Required

-f Whether Bundlor should cause a
build failure when there are
warnings about the resulting
manifest

No - defaults to false

-i <path> The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

Yes

-m <path> The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No

-p <path> The path to the OSGi profile. See
Chapter 6, OSGi Profiles and
Bundlor for details.

No

-o <path>
The path to write the manifest to.
This can either be a directory, a

No - defaults to System.out

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 6

Attribute Description Required

JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

If nothing is specified, the
manifest will be written to
System.out.

-r <path> The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

Command Line Property Values

Property substitution values can be optionally specified on the command line instead of as an external file
using the -Dproperty=value parameter.

% ./bundlor.sh \
-i ./org.springframework.integration.jar \
-m ./template.mf \
-o ./target/org.springframework.integration.jar \
-Dname="Spring Integration"

Transformed bundle written to ./target/org.springframework.integration.jar
%

See Section 5.3, “Specifying property placeholders” for details.

4.2 Apache ANT Usage

The ANT task allows you to run Bundlor from inside any ANT based build system

ANT Setup

The following procedure shows how to set up Bundlor inside of an existing ANT build file

1. Define a bundlor namespace

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 7

<project name="bundlor-sample-ant"
xmlns:bundlor="antlib:org.eclipse.virgo.bundlor.ant">

2. Import the bundlor task into your build

<target name="bundlor.init">
<ivy:cachepath resolveId="bundlor.classpath" pathid="bundlor.classpath" organisation="org.eclipse.virgo.bundlor"

module="org.eclipse.virgo.bundlor.ant" revision="1.1.2.RELEASE" conf="ant" inline="true"
type="jar" log="download-only"/>

<taskdef resource="org/eclipse/virgo/bundlor/ant/antlib.xml" uri="antlib:org.eclipse.virgo.bundlor.ant"
classpathref="bundlor.classpath"/>

</target>

This example uses a very simplistic method for building the bundlor task classpath. It is possible to
use a dependency manager such as Ivy to better manage the classpath of Bundlor.

3. Use the bundlor task, as shown in the following example. See the section called “ANT Task
Reference” for details about the parameters of the task.

<bundlor:bundlor
inputPath="${basedir}/target/classes"
outputPath="${basedir}/target/classes"
bundleVersion="1.0.2.BUILD-${timestamp}"
manifestTemplatePath="${basedir}/template.mf" >

<property name="name" value="${ant.project.name}" />
</bundlor:bundlor>

ANT Task Reference

Task Attributes

The following table lists all the attributes that you can specify for the bundlor ANT task.

Table 4.2. Attributes

Attribute Description Required

bundleSymbolicName The OSGi
Bundle-SymbolicName for
the resulting manifest

No

bundleVersion The OSGi Bundle-Version
for the resulting manifest

No

enabled Whether Bundlor should create a
manifest

No - defaults to true

failOnWarnings Whether Bundlor should cause a
build failure when there are
warnings about the resulting

No - defaults to false

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 8

Attribute Description Required

manifest

inputPath The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

Yes

manifestTemplatePath The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No

OSGiProfilePath The path to the OSGi profile. See
Chapter 6, OSGi Profiles and
Bundlor for details.

No

outputPath
The path to write the manifest to.
This can either be a directory, a
JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

If nothing is specified, the
manifest will be written to
System.out.

No - defaults to System.out

propertiesPath The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

Inline Manifest Template

Manifest templates can be optionally specified inline instead of as an external file using the
<manifestTemplate/> element.

<bundlor:bundlor>
<manifestTemplate>

Bundle-ManifestVersion: 2
Bundle-Name: Bundlor Core
Bundle-SymbolicName: org.eclipse.virgo.bundlor
Bundle-Version: 0
</manifestTemplate>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 9

</bundlor:bundlor>

See Chapter 5, Manifest Templates for details.

Inline OSGi Profile

OSGi profiles can be optionally specified inline instead of as an external file using the
<OSGiProfile/> element.

<bundlor:bundlor>
<OSGiProfile>

org.OSGi.framework.system.packages = \
org.eclipse.virgo.osgi.extensions.equinox.hooks,\
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.1",\
javax.activity,\
javax.annotation,\

...

org.OSGi.framework.bootdelegation = \
org.eclipse.virgo.kernel.authentication,\
com.sun.*,\
javax.xml.*,\

...
</OSGiProfile>

</bundlor:bundlor>

See Chapter 6, OSGi Profiles and Bundlor for details.

Inline Property Values

Property substitution values can be optionally specified inline instead of as an external file using the
<property/> and <propertySet/> elements.

<bundlor:bundlor>
<property name="bundle.name" value="Kernel test bundle"/>
<property name="bundle.version" value="1.0.2.BUILD-${timestamp}"/>
<propertyset>

<propertyref builtin="all"/>
</propertyset>

</bundlor:bundlor>

See Section 5.3, “Specifying property placeholders” for details.

ANT Task Examples

Creating a manifest

<bundlor:bundlor
inputPath="${basedir}/target/classes"
outputPath="${basedir}/target/classes"
bundleVersion="1.0.2.BUILD-${timestamp}"
manifestTemplatePath="${basedir}/template.mf"/>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 10

Creating a manifest with placeholder replacement

<bundlor:bundlor
inputPath="${basedir}/target/classes"
outputPath="${basedir}/target/target/classes"
bundleVersion="1.0.2.BUILD-${timestamp}"
manifestTemplatePath="${basedir}/template.mf">

<property name="bundle.name" value="Kernel test bundle"/>
<property name="bundle.version" value="1.0.2.BUILD-${timestamp}"/>

</bundlor:bundlor>

4.3 Apache Maven Usage

The Maven plugin allows Bundlor to be run from inside any Maven project.

Maven Setup

The following procedure shows how to set up Bundlor inside of an existing Maven POM file.

1. Add the Eclipse Virgo build and SpringSource Enterprise Bundle Repository to the pom.xml file.

<pluginRepositories>
<pluginRepository>

<id>eclipse.virgo.build.bundles.release</id>
<name>Eclipse Virgo Build</name>
<url>http://build.eclipse.org/rt/virgo/maven/bundles/release</url>

</pluginRepository>
<pluginRepository>

<id>com.springsource.repository.bundles.external</id>
<name>SpringSource Enterprise Bundle Repository - External Bundle Releases</name>
<url>http://repository.springsource.com/maven/bundles/external</url>

</pluginRepository>
...

</pluginRepositories>

2. Use the bundlor plugin, as shown in the following example. See the section called “Maven Plugin
Reference” for details about the parameters of the plugin.

<build>
<plugins>

<plugin>
<groupId>org.eclipse.virgo.bundlor</groupId>
<artifactId>org.eclipse.virgo.bundlor.maven</artifactId>
<version>1.1.2.RELEASE</version>
<executions>
<execution>

<id>bundlor</id>
<goals>
<goal>bundlor</goal>

</goals>
</execution>

</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 11

<version>2.4</version>
<configuration>
<archive>

<manifestFile>
target/classes/META-INF/MANIFEST.MF

</manifestFile>
</archive>

</configuration>
</plugin>
...

</plugins>
...

</build>

Maven Plugin Reference

Plugin Configuration

The following table lists all the elements that you can specify for the bundlor Maven plugin.

Table 4.3. Elements

Attribute Description Required

bundleSymbolicName The OSGi
Bundle-SymbolicName for
the resulting manifest

No - defaults to
${project.artifactId}

bundleVersion The OSGi Bundle-Version
for the resulting manifest

No - defaults to
${project.version}

enabled Whether Bundlor should create a
manifest

No - defaults to true

failOnWarnings Whether Bundlor should cause a
build failure when there are
warnings about the resulting
manifest

No - defaults to false

inputPath The path to the input to create a
manifest for. This can either be a
directory or a JAR file.

No - defaults to
${project.build.outputDirectory}

manifestTemplate An inline manifest template. See
the section called “Inline
Manifest Template” for details.

No

manifestTemplatePath The path to the manifest
template. See Chapter 5,
Manifest Templates for details.

No - defaults to
${basedir}/template.mf

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 12

Attribute Description Required

OSGiProfilePath The path to the OSGi profile. See
Chapter 6, OSGi Profiles and
Bundlor for details.

No

outputPath
The path to write the manifest to.
This can either be a directory, a
JAR file, or not specified.

If a directory is specified, the
manifest will be written to
${directory}/META-INF/MANIFEST.MF.

If a JAR file is specified, the
manifest will be written as the
manifest for that JAR file.

No - defaults to
${project.build.outputDirectory}

propertiesPath The path to a properties file used
for substitution. See Section 5.3,
“Specifying property
placeholders” for details.

No

Inline Manifest Template

Manifest templates can be optionally specified inline instead of as an external file using the
<manifestTemplate/> element. For example:

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>
<configuration>

<manifestTemplate>
Bundle-ManifestVersion: 2
Bundle-Name: Bundlor Core
Bundle-SymbolicName: org.eclipse.virgo.bundlor
Bundle-Version: 0

</manifestTemplate>
</configuration>

</execution>

See Chapter 5, Manifest Templates for details.

If a <manifestTemplate/> element is specified, any <manifestTemplatePath/> element is
ignored.

Inline OSGi Profile

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 13

OSGi profiles can be optionally specified inline instead of as an external file using the
<OSGiProfile/> element.

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>
<configuration>

<OSGiProfile>
org.OSGi.framework.system.packages = \
org.eclipse.virgo.osgi.extensions.equinox.hooks,\
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.1",\
javax.activity,\
javax.annotation,\

...

org.OSGi.framework.bootdelegation = \
org.eclipse.virgo.kernel.authentication,\
com.sun.*,\
javax.xml.*,\

...
</OSGiProfile>

</configuration>
</execution>

See Chapter 6, OSGi Profiles and Bundlor for details.

Inline Property Values

Property substitution values can be optionally specified inline instead of as an external file using the
<properties/> element.

<project>
...
<properties>

<bundle.name>${project.name}</bundle.name>
<bundle.version>2.0.0.RELEASE</bundle.version>

</properties>
...

</project>

See Section 5.3, “Specifying property placeholders” for details.

Maven Plugin Examples

Creating a manifest

<project>
...
<build>

<plugins>
<plugin>
<groupId>org.eclipse.virgo.bundlor</groupId>
<artifactId>org.eclipse.virgo.bundlor.maven</artifactId>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 14

<executions>
<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
...
</project>

Creating a manifest with placeholder replacement

<project>
...
<properties>

<bundle.name>${project.name}</bundle.name>
<bundle.version>2.0.0.RELEASE</bundle.version>

</properties>
...
<build>

<plugins>
<plugin>
<groupId>org.eclipse.virgo.bundlor</groupId>
<artifactId>org.eclipse.virgo.bundlor.maven</artifactId>
<executions>

<execution>
<id>bundlor</id>
<goals>

<goal>bundlor</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
...
</project>

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 15

5. Manifest Templates

5.1 Introduction

A manifest template is a file that Bundlor uses during the generation of OSGi-compliant manifest entries
in a JAR's manifest. The format of the manifest template is the same as that of a standard Java manifest
file, i.e. a series of 'key: value' pairs.

From this template, Bundlor recognizes a specific set of directives and uses them to generate the
OSGi-compliant manifest entries. Bundlor will also add any other headers that are specified in the
template to the generated manifest. This is typically used to specify things like the bundle's symbolic
name and version.

You can also specify property placeholders, or variables, in your manifest template that Bundlor
substitutes with actual values at runtime. With this feature, your manifest templates become more
dynamic and useful across a variety of your projects. A particularly handy use for this feature is to tell
Bundlor to automatically expand versions of imports based on a pattern of your choosing. See
Section 5.3, “Specifying property placeholders” for details.

5.2 Manifest Template Format

The following table lists the headers you can add to the manifest template, in addition to the standard
manifest headers.

Table 5.1. Headers for Manifest Template

Header Description

Excluded-Exports A comma-separated list of packages that must not
be added to the manifest's Export-Package
header. This is useful for preventing
implementation packages from being exported.

Excluded-Imports By default, Bundlor adds imports for every
package that Bundlor determines is referenced by
the code or for special files in the jar. Use this
header to specify a comma-separated list of
packages for which imports Bundlor will not
generate.

Export-Template By default, Bundlor versions all exported packages
at the specified Bundle-Version. Use this
header to specify that individual exported
packages be exported at different versions. For

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 16

Header Description

example, Export-Template
com.foo.*;version="1.5" results in
Bundlor versioning any Export-Package
entries for com.foo or its subpackages at 1.5.

Ignored-Existing-Headers If the JAR for which you are generating a manifest
already contains an OSGi-compliant manifest, use
this template header to list headers in the original
manifest which Bundlor should ignore.

Import-Template Use this header to augment package imports that
Bundlor generates via bytecode and special file
analysis. Typically you use the header to version
the import and, in some cases, to mark them as
optional. When you use this header to version the
import, you can optionally specify a version
expansion pattern so that Bundlor sets the version
to a range rather than a single version. To use the
header, set its value to a comma-separated list of
package names and attributes.

Version-Patterns Use this header to declare one or more version
expansion patterns and give each one a name. You
can then use these named patterns in the
Import-Template header if you want to
specify an expansion pattern for the version of
an imported package. This feature is described in
detail later in this section.

A wilcard '*' at the end of the package name is supported to match multiple packages. For example, the
header Import-Template:
com.foo;version=[1.0,2.0);resolution:=optional,com.bar.*;version="[1.5,1.6)"
will cause any import generated for the com.foo package to be versioned at 1.0 (inclusive) to 2.0
(exclusive) and to be considered optional, and for any import of com.bar or its sub-packages to be
versioned at 1.5 (inclusive) to 1.6 (exclusive).

5.3 Specifying property placeholders

To specify a property placeholder in your manifest template, use the form ${property.name}, where
property.name refers to the name of the property placeholder. The method in which the manifest
template actually gets the value of the property placeholder at runtime depends on the Bundlor front end
you use (command line, ANT, or Maven); the details are described later.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 17

The following example shows how to use a property placeholder for the Bundle-Name manifest header
rather than a literal.

Bundle-Name: ${bundle.name}

5.4 Specifying automatic version expansion of imported
packages based on a pattern

When you use the Import-Template template header to augment package imports that Bundlor
generates in the manifest file, you use the version attribute to specify a version range of the imported
package.

Import-Template:
org.eclipse.virgo.kernel.*;version="[1.2.0, 2.0.0)"
org.apache.commons.logging;version="[1.1.1, 2.0.0)"

The preceding example specifies that Bundlor should import the org.eclipse.virgo.kernel.*
packages in the range [1.2.0, 2.0.0) and the org.apache.commons.logging package in the
range [1.1.1, 2.0.0) in the generated manifest file. This works just fine for many use cases, but
sometimes the use of literal versions in this manner can be restrictive.

In order to make the manifest template more dynamic and useful, you can specify that Bundlor
automatically expand the package version into a version range using an expansion pattern of your
choosing. The pattern uses as a base a property placeholder that you define (as described in Section 5.3,
“Specifying property placeholders”) and set to a valid OSGi version number. Then, based on the
expansion pattern you specify, Bundlor generates a version range using the 4 parts of an OSGi version:
major, minor, micro, and qualifier.

The way to tell Bundlor to automatically expand a package import version is to specify the property
placeholder to the right of the version directive of the package in the Import-Template header,
and then within the property placeholder, specify the pattern for both sides of the version range. The
following manifest template snippet shows how to use this feature; the example is described in detail after
the table.

Import-Template:
org.eclipse.virgo.kernel.*;version="${org.eclipse.virgo.kernel:[=.=.=.=, +1.0.0)}",
org.apache.commons.logging.*;version="${org.apache.commons.logging:[=.=.=.=, =.=.+1)}"

The following table lists the symbols you can use in the expansion pattern.

Table 5.2. Expansion Pattern Symbols

Symbol Description Location Allowed

= Use the same value from the
variable.

Valid only in the first three
segments (major, minor, micro)

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 18

Symbol Description Location Allowed

of the version pattern.

[+/-]n Adjust the value from the
variable by this amount. For
example, +1 means to add 1 to
the value from the variable.

Valid only in the first three
segments (major, minor, micro)
of the version pattern.

n Substitute this value for the one
in the variable. Typically you
only use this for putting in a 0.

Valid only in the first three
segments (major, minor, micro)
of the version pattern.

Any legal qualifier value Substitute this value for the one
in the variable.

Valid only in the fourth
(qualifier) segment of the version
pattern.

Based on the descriptions of the symbols, we can now understand how the examples above work. First
assume that you have set the property ${org.eclipse.virgo.kernel} to the value 1.2.0.
Based on the expansion pattern, Bundlor sets the version range of the imported
org.eclipse.virgo.kernel.* packages to [1.2.0, 2.0.0). The pattern in this case first
specifies that the beginning of the version range stay exactly the same as the value of the property. The
pattern then specifies that at the end of the version range, the major part of the version should be one
integer larger than what the property is originally set to (1); the pattern then specifies that the minor and
micro segments of the version both be set to 0.

Similarly, assume that you set the ${org.apache.commons.logging} property to 1.4.0.
Bundlor generates a version range of [1.4.0, 1.4.1). Again, the beginning of the range is exactly
the same as the property value. The pattern specifies that, in the end of the range, only the micro segment
of the version increase by one; the major and minor segments stay the same.

Re-using version patterns

If you use the same version expansion pattern for several imports, you can name the pattern using the
Version-Patterns header in the manifest template, and then use this name in the particular import
of Import-Template.

Use the form pattern.name;pattern="pattern" to specify a named pattern, where
pattern.name is the name of the pattern and pattern is the pattern, such as [=.=.=.=,
+1.0.0).

Version-Patterns:
apache;pattern="[=.=.=.=, +1.0.0)",
hibernate;pattern="[=.=.=.=, =.=.+1)"

The preceding example shows two named patterns: apache and hibernate. The apache pattern
specifies a version range from the one provided in the property up to but not including the next major

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 19

version. The hibernate pattern specifies a version range of the one provided up to but not including
the next micro version.

To use a named pattern, simply substitute it in the Import-Template header in the place where you
would put the in-line pattern.

Import-Template:
org.apache.commons.codec.*;version="${org.apache.commons.codec:apache}",
org.apache.commons.logging.*;version="${org.apache.commons.logging:apache}",
org.hibernate.*;version="${org.hibernate:hibernate}"
org.myorg.*;version="${org.myorg:[]=.=.=.=, =.+1.0.=)}"

In the example, the apache named pattern is used twice, for the two org.apache imports, and the
hibernate pattern is used once. Also note that you can also include an import whose version is
specified with an in-line pattern.

5.5 Example Bundlor Manifest Template

The following shows a simple example of a Bundlor manifest template file, with a description after the
sample.

Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.springframework.binding
Bundle-Name: ${bundle.name}
Import-Package:
ognl;version="[2.6.9, 3.0.0)";resolution:=optional,
org.jboss.el;version="[2.0.0, 3.0.0)";resolution:=optional

Import-Template:
org.springframework.*;version="[2.5.4.A, 3.0.0)",
org.apache.commons.logging;version="[1.1.1, 2.0.0)",
javax.el;version="[2.1.0, 3.0.0)";resolution:=optional,
ognl;version="[2.6.9, 3.0.0)";resolution:=optional,
org.jboss.el;version="[2.0.0, 3.0.0)";resolution:=optional

The headers marked in bold are required in all manifest templates unless the jar already contains a
manifest with those headers.

• Bundle-ManifestVersion: This should always be 2

• Bundle-SymbolicName: specifies a unique name for the bundle of
org.springframework.binding

• Bundle-Name: specifies a human-readable name for the bundle. The example shows how to use a
property placeholder ${bundle.name}, which at runtime Bundlor will substitute with an actual
value, such as Spring Binding.

• Import-Package: hard-codes two packages that will be imported (ognl and org.jboss.el in
the generated manifest. Bundlor isn't infallible; this lets you add imports that it misses.

• Import-Template: specifies the versions for the package imports that Bundlor generates, marking

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 20

javax.el, ognl, and org.jboss.el optional.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 21

6. OSGi Profiles and Bundlor
When managing and transforming bundles it can become difficult to remember which packages are boot
delegated, which are exported from the system bundle, and which are from other bundles in your system.
This information is important because you typically do not want to import packages into your own
application that are boot delegated, you want to import system bundle packages at version 0, and you
want to define custom imports for all the rest of the bundles. Trying to keep track of which packages are
in each of these categories can be error prone; similarly, defining template entries for them in your
manifest template can be time-consuming and tedious.

To solve this problem, you can specify that Bundlor take an OSGi profile as input and automatically add
template entries for boot delegated packages and system bundles. These import entries would ignore
boot-delegated packages and set the version of system bundles to version="0". This feature is
available for all Bundlor front ends: command-line, ANT and Maven.

6.1 Overview of OSGi profiles

An OSGi profile defines the packages that a particular OSGi runtime (such as Virgo) exports from the
system bundle and the packages that it delegates to the boot class loader. An OSGi profile isn't an actual
file; rather, it is two properties that are well known to an OSGi runtime. However, when you pass these
properties to Bundlor, you pass them as a file, as described in the next section. The properties that make
up an OSGi profile are as follows.

• The org.OSGi.framework.system.packages property defines the packages exported from
the system bundle.

• The org.OSGi.framework.bootdelegation property defines the packages that are boot
delegated.

If you are using Virgo as your OSGi runtime, see the file
$VIRGO_HOME/configuration/java6-server.profile for its OSGi profile, where
$VIRGO_HOME refers to the main installation directory of Virgo. If you are using another OSGi runtime,
such as Equinox, then see their documentation for their OSGi profile.

For additional information about the syntax of the values of these properties, see the OSGi Core
specification.

6.2 Using OSGi profiles with Bundlor

The first step in using OSGi profiles with Bundlor is to create a file that contains a textual representation
of the two properties that make up an OSGi profile: org.OSGi.framework.system.packages
and org.OSGi.framework.bootdelegation. What you include in this file is up to you, but

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 22

http://www.OSGi.org/Specifications/HomePage
http://www.OSGi.org/Specifications/HomePage

typically you start with the OSGi profile of the OSGi runtime you are using, and then customize it to fit
your environment.

If you are using Virgo as your OSGi runtime, you can start by copying the section of the file
$VIRGO_HOME/configuration/java6-server.profile that refers to the two properties and
pasting it into your text file. If you are using another runtime, consult their documentation.

The following snippet shows a partial OSGi profile for Virgo; for clarity only a few packages are shown.
The example shows the format in which you should create your own OSGi profile file.

org.OSGi.framework.system.packages = \
org.eclipse.virgo.osgi.extensions.equinox.hooks,\
javax.accessibility,\
javax.activation,\
javax.activation;version="1.1.1",\
javax.activity,\
javax.annotation,\

...

org.OSGi.framework.bootdelegation = \
org.eclipse.virgo.kernel.authentication,\
com.sun.*,\
javax.xml.*,\

...

Once you've created your OSGi profile file, the method of passing it to Bundlor depends on the front end
you are using to generate a manifest. For detailed information about using the various front ends, see
Chapter 4, Usage.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 23

7. Detecting Manifest Requirements
Bundlor's main function is to scan an existing JAR file and determine its runtime dependencies. With this
information it can then generate the OSGi-compliant manifest headers needed for proper runtime
operation. This analysis is comprised of looking for class references and class names in Java classes and
certain well-known file types.

7.1 Java Detection Criteria

Bundlor scans any Java class it can find in the artifact created by the underlying build system. This means
that if a build process has custom behavior (i.e. weaving with AspectJ or jarjaring), Bundlor will be
able to see and analyze the changes made by that process as long as the changes are in the artifact created
by the build system.

There are a number of places in a Java class that another Java type can be referenced from. Bundlor
detects these references and adds manifest requirements for them.

Export Package

Bundlor exports any package that contains a class.

Import Package

The following is a list of the places that Bundlor will search for type names

• Declared Type Superclass Types

• Declared Type Implemented Interfaces Types

• Declared Type Annotation Types

• Declared Field Types

• Declared Field Values Types

• Declared Method Argument Types

• Declared Method Return Types

• Declared Method Exception Types

• Declared Method Annotation Types

• Reference To Field Owner Type

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 24

• Reference To Field Type

• Declared Local Variable Type

• Reference to Method Declaring Type

• Reference to Method Return Type

• Reference to Method Argument Types

• Allocation of Array Type

• Declared Parameter Annotation Types

• Caught Exception Type

• Instantiated Type

• Cast Target Type

• Instanceof Type

• Declared Constant Type

7.2 Spring Context Configuration Detection Criteria

Bundlor scans for Spring context configuration files. If it detects this file type, it scans the file for a
number of values that contain class names.

Spring Context Values

Using XPath syntax, the following is a list of values searched for type names

• //beans:bean/@class

• //aop:declare-parents/@implement-interface

• //aop:declare-parents/@default-impl

• //context:load-time-weaver/@weaver-class

• //context:component-scan/@name-generator

• //context:component-scan/@scope-resolver

• //jee:jndi-lookup/@expected-type

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 25

• //jee:jndi-lookup/@proxy-interface

• //jee:remote-slsb/@home-interface

• //jee:remote-slsb/@business-interface

• //jee:local-slsb/@business-interface

• //jms:listener-container/@container-class

• //lang:jruby/@script-interfaces

• //lang:bsh/@script-interfaces

• //oxm:class-to-be-bound/@name

• //oxm:jibx-marshaller/@target-class

• //osgi:reference/@interface

• //osgi:service/@interface

• //util:list/@list-class

• //util:map/@map-class

• //util:set/@set-class

• //webflow:flow-builder/@class

• //webflow:attribute/@type

• //osgi:service/osgi:interfaces/beans:value

• //osgi:reference/osgi:interfaces/beans:value

• //context:component-scan/@base-package

7.3 Blueprint Service Configuration Detection Criteria

Bundlor scans for Blueprint Service configuration files. If it detects this file type, it scans the file for a
number of values that contain class names.

Blueprint Configuration Values

Using XPath syntax, the following is a list of values searched for type names

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 26

• //bp:bean/bp:argument/@type

• //bp:bean/@class

• //bp:service/@interface

• //bp:reference/@interface

• //bp:reference-list/@interface

• //bp:map/@key-type

• //bp:map/@value-type

• //bp:list/@value-type

• //bp:set/@value-type

• //bp:array/@value-type

• //bp:interfaces/bp:value

7.4 Web Application File Detection Criteria

Bundlor scans for the Servlet web.xml file located in the WEB-INF directory. If it detects this file, it
scans the file for a number of values that contain class names.

web.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //context-param/param-values

• //filter/filter-classs

• //filter/init-param/param-values

• //listener/listener-classs

• //servlet/servlet-classs

• //servlet/init-param/param-values

• //error-page/exception-types

• //env-entry/env-entry-types

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 27

• //ejb-ref/homes

• //ejb-ref/remotes

• //ejb-local-ref/local-homes

• //ejb-local-ref/locals

• //service-ref/service-interfaces

• //resource-ref/res-types

• //resource-env-ref/resource-env-ref-types

• //message-destination-ref/message-destination-type

7.5 Bundle-Classpath File Detection Criteria

Bundlor scans for JAR files located anywhere in the bundle. If it detects this file, it runs the entire set of
analyzers against it. The imports and exports of the JAR file are added to the bundle's manifest and the
JAR file is placed on the bundle's Bundle-Classpath.

7.6 JPA Detection Criteria

Bundlor scans for the JPA persistence.xml and orm.xml files located in the META-INF
directory. If it detects this file it scans the file for a number of values that contain class names and
package names. If the class name is unqualified (i.e. has no '.' in it), the classname is prepended with the
content of the entity-mapping tag's package element.

persistence.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //persistence-unit/provider

• //persistence-unit/class

orm.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //element-collection/@target-class

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 28

• //embeddable/@class

• //entity/@class

• //entity-listener/@class

• //entity-result/@entity-class

• //id-class/@class

• //many-to-many/@target-entity

• //many-to-one/@target-entity

• //map-key-class/@class

• //mapped-superclass/@class

• //named-native-query/@result-class

• //one-to-many/@target-entity

• //one-to-one/@target-entity

7.7 EclipseLink Detection Criteria

Bundlor scans for the EclipseLink eclipselink-orm.xml files located in the META-INF directory.
If it detects this file it scans the file for a number of values that contain class names and package names. If
the class name is unqualified (i.e. has no '.' in it), the classname is prepended with the content of the
entity-mapping tag's package element.

eclipselink-orm.xml Values

Using XPath syntax, the following is a list of values searched for type names

• //cache-interceptor/@class

• //converter/@class

• //copy-policy/@class

• //customizer/@class

• //discriminator-class/@value

• //id-class/@class

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 29

• //element-collection/@target-class

• //entity/@class

• //entity-listener/@class

• //entity-result/@entity-class

• //embeddable/@class

• //many-to-many/@target-entity

• //many-to-one/@target-entity

• //map-key-class/@class

• //mapped-superclass/@class

• //named-native-query/@result-class

• //named-stored-procedure-query/@result-class

• //object-type-converter/@data-type

• //object-type-converter/@object-type

• //one-to-many/@target-entity

• //one-to-one/@target-entity

• //property/@value-type

• //query-redirectors/@all-queries

• //query-redirectors/@read-all

• //query-redirectors/@read-object

• //query-redirectors/@report

• //query-redirectors/@update

• //query-redirectors/@insert

• //query-redirectors/@delete

• //read-transformer/@transformer-class

• //stored-procedure-parameter/@type

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 30

• //struct-converter/@converter

• //type-converter/@data-type

• //type-converter/@object-type

• //variable-one-to-one/@target-interface

• //write-transformer/@transformer-class

7.8 Hibernate Mapping File Detection Criteria

Bundlor scans for any file that ends with a .hbm extension. If it detects one of these files it scans the file
for a number of attributes that can contain class names. If the class name is unqualified (i.e. has no '.' in
it), the classname is prepended with the content of the hibernate-mapping tag's package attribute.
Many of the attributes that can contain class names can also contain Hibernate keywords corresponding to
Hibernate-known types. When these are detected, no manifest requirements are added.

Hibernate Attributes

Using XPath syntax, the following is a list of attributes searched for type names

• //class/@name

• //id/@type

• //generator/@class

• //composite-id/@class

• //discriminator/@type

• //property/@type

• //many-to-one/@class

• //one-to-one/@class

• //one-to-many/@class

• //many-to-many/@class

• //version/@type

• //component/@class

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 31

• //dynamic-component/@class

• //subclass/@name

• //joined-subclass/@name

• //union-subclass/@name

• //import/@class

Hibernate Keywords

The following is a list of reserved Hibernate keywords that will not trigger the addition of manifest
requirements

• assigned

• big_decimal

• big_integer

• binary

• blob

• boolean

• byte

• calendar

• calendar_date

• character

• class

• clob

• currency

• date

• double

• float

• foreign

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 32

• guid

• hilo

• identity

• imm_binary

• imm_calendar

• imm_calendar_date

• imm_date

• imm_serializable

• imm_time

• imm_timestamp

• increment

• integer

• locale

• long

• native

• select

• seqhilo

• sequence

• sequence-identity

• serializable

• short

• string

• text

• time

• timestamp

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 33

• timezone

• true_false

• uuid

• yes_no

7.9 JSP File Detection Criteria

Bundlor scans for the JSP files. If it detects this file, it scans the file for a number of values that contain
class names.

JSP Values

Using Regular expression syntax, the following is a list of values searched for type names

• <%@ page.*import=\"(.*?)\".*%>

7.10 Log4J Configuration Detection Criteria

Bundlor scans for Log4J configuration files. If it detects this file type, it scans the file for a number of
values that contain class names.

Log4J Configuration Values

Using XPath syntax, the following is a list of values searched for type names

• //appender/@class

• //layout/@class

7.11 Static Resource Detection Criteria

Bundlor scans for any static resource and exports that package.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 34

8. Detecting Manifest Issues
Bundlor's second function is to scan an existing manifest and identify any potential issues with it.

8.1 Import Version Range Warning Criteria

Bundlor checks that all entries in the Import-Package header have a sensible version range declared.
This ensures that there are no version ranges that are reversed ([2, 1)), and no version ranges that are
empty ([1, 1)).

8.2 Import of Exported Packages Warning Criteria

Bundlor checks that the manifest does not import any package that it exports. This behavior is usually
indicative of a package split between two bundles.

8.3 Signed JAR Warning Criteria

Bundlor checks that the manifest does not contain headers indicating that it is from a signed JAR.
Running Bundlor against a signed JAR will render that JAR invalid as the manifest will have changed
from when it was signed.

8.4 Versioned Imports Warning Criteria

Bundlor checks that all entries in the Import-Package header have a version range declared.

8.5 Versioned Exports Warning Criteria

Bundlor checks that all entries in the Export-Package header have a version declared.

8.6 Bundle-SymbolicName Warning Criteria

Bundlor checks that the manifest contains a Bundle-SymbolicName header.

8.7 Manifest-Version Warning Criteria

Bundlor checks that the manifest contains a Bundle-ManifestVersion header with a value of 2.

Eclipse Virgo Bundlor

1.1.2.RELEASE Bundlor User Guide 35

	Bundlor User Guide
	Table of Contents
	Copyright
	License
	1. Introduction to Bundlor
	1.1 About Bundlor

	2. Getting Bundlor
	2.1 Getting the Bundlor ZIP
	2.2 Getting Bundlor with Ivy
	2.3 Getting Bundlor with Maven

	3. Quickstart
	3.1 Command Line Quickstart
	3.2 Apache ANT Quickstart
	3.3 Apache Maven Quickstart

	4. Usage
	4.1 Command-Line Usage
	Command Syntax
	Command Line Reference
	Command Line Parameters
	Command Line Property Values

	4.2 Apache ANT Usage
	ANT Setup
	ANT Task Reference
	Task Attributes
	Inline Manifest Template
	Inline OSGi Profile
	Inline Property Values

	ANT Task Examples
	Creating a manifest
	Creating a manifest with placeholder replacement

	4.3 Apache Maven Usage
	Maven Setup
	Maven Plugin Reference
	Plugin Configuration
	Inline Manifest Template
	Inline OSGi Profile
	Inline Property Values

	Maven Plugin Examples
	Creating a manifest
	Creating a manifest with placeholder replacement

	5. Manifest Templates
	5.1 Introduction
	5.2 Manifest Template Format
	5.3 Specifying property placeholders
	5.4 Specifying automatic version expansion of imported packages based on a pattern
	Re-using version patterns

	5.5 Example Bundlor Manifest Template

	6. OSGi Profiles and Bundlor
	6.1 Overview of OSGi profiles
	6.2 Using OSGi profiles with Bundlor

	7. Detecting Manifest Requirements
	7.1 Java Detection Criteria
	Export Package
	Import Package

	7.2 Spring Context Configuration Detection Criteria
	Spring Context Values

	7.3 Blueprint Service Configuration Detection Criteria
	Blueprint Configuration Values

	7.4 Web Application File Detection Criteria
	web.xml Values

	7.5 Bundle-Classpath File Detection Criteria
	7.6 JPA Detection Criteria
	persistence.xml Values
	orm.xml Values

	7.7 EclipseLink Detection Criteria
	eclipselink-orm.xml Values

	7.8 Hibernate Mapping File Detection Criteria
	Hibernate Attributes
	Hibernate Keywords

	7.9 JSP File Detection Criteria
	JSP Values

	7.10 Log4J Configuration Detection Criteria
	Log4J Configuration Values

	7.11 Static Resource Detection Criteria

	8. Detecting Manifest Issues
	8.1 Import Version Range Warning Criteria
	8.2 Import of Exported Packages Warning Criteria
	8.3 Signed JAR Warning Criteria
	8.4 Versioned Imports Warning Criteria
	8.5 Versioned Exports Warning Criteria
	8.6 Bundle-SymbolicName Warning Criteria
	8.7 Manifest-Version Warning Criteria

