ForSyDe tutorial

Alfonso Acosta <al f onsoa@t h. se>

2008-09-20
Revision History

Revision 0.2 2008-09-20
Complete draft.

Revision 0.1 2008-08-15

First version.

Table of Contents

1. Disclaimer and Prer@QUISITEScieiueu ittt ettt e ettt e e et e e e et e e e enaaeaees 1
2. INSEAIING FOIrSYDE ... ittt ettt et e et e eeaas 2
3. INtrodUCTION T0 FOrSYDE ...ttt e 2
B L SIgNAIS ittt et e a e e aee 2
32 PIOCESSES ...ttt ettt 3
3.3, ProCeSS CONSITUCTONSuierieii ettt ettt et e e e anas 3
3.4. Models of Computation and Domain INterfacesooovviviieiiiiiiic e 5
4. Deep-embedded vs Shallow-embedded SIgNalsccovuiiiiiiiiiiii 6
5. Using deep-embedded SIgNalScoouueiiiiiii e 7
5.1. Combinational SYSLEIMSuuiiiiiiiee ittt 7
5.2, SEQUENTIAl SYSLEIMIS «..oeei ettt 12
5.3, USING COMPONENLESeeetieeiiiiie e ettt ettt e et ettt e e et e e e e aea s 15
5.4, VHDL BACKENGcovuniiiiiiii ettt et 18
5.5, GraphML Backendiiiiiiiiiiii e 21
6. Shallow-embedded SIgNAISu i 26
A. FSVecs: Vectors parameterized iN SIZEo.uuuoiiiuiiiieii et 27
Lo GO8L et 27
2 H O ? e 27
3. Type-level decimal NUMETEISiiiiii e 28
4. Fixed Sized VeCtors themsalVESiiiiiiii e 30
B FSVEC HSSUES ...ttt ettt et et e eee 31

1. Disclaimer and Prerequisites

This document has been devised as a practical hands-on introduction to the use of ForSyDe's
implementation. Thus, it isintentionally informal and non-exhaustive. If you are interested in ForSyDe's
theoretical foundations please refer to the Documentation section [http://www.ict.kth.se/org/ict/ecs/sam/
projects/forsyde/www/index.html#documentation] in our website [http://www.ict.kth.se/org/ict/ecs/sam/
projects/forsyde/www/].

In order to take full advantage of this tutorial, it is essentidl to have a good
background in the Haskell [http://www.haskell.org] programming language. Familiarity with
some Haskell extensions (Template Haskell [http://www.haskell.org/th], Multiparameter Type
Classes with Functional Dependencies [http://haskell.org/ghc/docs/latest/ntml/users_guide/type-class-
extensions.html#functional-dependencies], Undecidable and Overlapping Instances [http://haskell.org/
ghc/docy/latest/html/users_guide/type-class-extensions.html#instance-decls]) might help but is not vital.

http://www.ict.kth.se/forsydeindex.html#documentation
http://www.ict.kth.se/forsydeindex.html#documentation
http://www.ict.kth.se/forsydeindex.html#documentation
http://www.ict.kth.se/forsyde
http://www.ict.kth.se/forsyde
http://www.ict.kth.se/forsyde
http://www.haskell.org
http://www.haskell.org
http://www.haskell.org/th
http://www.haskell.org/th
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#functional-dependencies
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#functional-dependencies
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#functional-dependencies
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#functional-dependencies
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#instance-decls
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#instance-decls
http://haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#instance-decls

ForSyDe tutorial

2. Installing ForSyDe

ForSyDe is implemented as a Haskell-embedded Domain Specific Language (DSL). As intimidating as
the previous phrase might sound, from a practical point of view it only meansthat, to all effects, ForSyDe
issimply aHaskell library.

As it was already stated in Section 1, “Disclaimer and Prerequisites’, ForSyDe relies on many Haskell
extensions, some of which are exclusive to GHC. For that reason, a recent version of GHC is required
to build ForSyDe'.

ForSyDe's library is available on Haskell's HackageDB [http://hackage.haskell.org], a popular repository
of Haskell Cabal [http://www.haskell.org/cabal] packages. If ForSyDeisthefirst Cabal packageyouinstall
or your memory needs to be refreshed in this matter, you should read "How to install a Cabal package"
[http://haskell.org/haskel lwiki/Cabal/How_to_install_a Cabal_package].

At the time being, ForSyDe depends on the t ype- | evel [http://hackage.haskell.org/cgi-bin/hackage-
scripts/package/type-level] and par anet eri zed- dat a [http://hackage.haskell.org/cgi-bin/hackage-
scripts/package/parameterized-data] packages to offer numerically-parametrized vectors, and on some
other packages normally distributed with GHC (e.g. nt | [http://hackage.haskell.org/cgi-bin/hackage-
scripts/package/mtl] ..)

3. Introduction to ForSyDe

This section is a short introduction to some basic concepts surrounding ForSyDe which are vital to
understand how to use its implementation. If you cannot wait to get your hands dirty and begin with the
implementation examples, go directly to Section 4, “ Deep-embedded vs Shall ow-embedded signals”.

ForSyDe, which stands for Formal System Design, isamethodology aimed at raising the abstraction level
in which systems (e.g. System on Chip Systems, Hardware or Software) are designed.

ForSyDe systems are modelled as networks of processes interconnected by signals. In addition, the
designer is alowed to use processes belonging to different Models of Computation.

In order to understand how systems are modelled, it isimportant to get familiar with the concepts outlined
above.

3.1. Signals

Signals can be intuitively defined as streams of information which flow through the different processes
forming a system.

For example, thisisasignal containing the first 10 positive numbers

Example 1. Signal containing thefirst 10 positive numbers
<1,2,3,4,5,6,7,89,10>

More formally, asignal is a sequence of events where each event has atag and avalue. In ForSyDe, the
tag of an event isimplicitly given by the event's position on the list. For instance, the sample signal above
isformed by integer values which areidentical to the signal implicit tags.

1ForsyDe has been tested to run successfully on Linux, OSX-Leopard-x86 and Windows when compiled under GHC version 6.8.2. Due to the
massive number of instances automatically generated in ForSyDe, it is hot recommended to use a higher version of GHC until bug #2328 [http://
hackage.haskell.org/trac/ghc/ticket/2328] is fixed.

http://hackage.haskell.org
http://hackage.haskell.org
http://www.haskell.org/cabal
http://www.haskell.org/cabal
http://haskell.org/haskellwiki/Cabal/How_to_install_a_Cabal_package
http://haskell.org/haskellwiki/Cabal/How_to_install_a_Cabal_package
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mtl
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mtl
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/mtl
http://hackage.haskell.org/trac/ghc/ticket/2328
http://hackage.haskell.org/trac/ghc/ticket/2328
http://hackage.haskell.org/trac/ghc/ticket/2328

ForSyDe tutorial

It isimportant to note that signals are homogeneous (i.e. asignal cannot carry values belonging to different
types)

Note

The interpretation of tags, as we will see, is determined by the Model of Computation used, e.g.
an identical tag of two events in different signals does not necessarily imply that these events
happen at the same time.

3.2. Processes

Processes are pure functions on signals, i.e. for agiven set of input signals a process always gets the same
set of output signals.

Figure 1. Processes viewed as functions

p:S xSx ... x §—=8x8x ...x§

g
n m

They can aso be viewed as a black box which performs computations over its input signals and forward
the results to adjacent processes through output signals.

Figure 2. Processes viewed as boxes

—

. —
o P |

Note that this still allows processes to have internal state. A process does not necessarily react identically
the same event applied at different times. But it will produce the same, possibly infinite, output signals
when confronted with identical, possibly infinite, input signals.

One of the ssimplest examples one can think of, is a process which merely adds one to every value in its
only input signal: plusl.

Example 2. The plusl process
plusl(<vy, Vo, V3, ...>) = <vi+1, Vot+l, vatl, ...>)
3.3. Process Constructors

In ForSyDe, all processes, even plusl, must be created from process constructors. A process constructor
takes zero or more functions and/or values which determine the initial state and behaviour of the process
to be created.

ForSyDe tutorial

Figure 3. A process constructor

-

%
~ . | PC|. _
In — ——— Om
f
Vi| Vo | -] < values
fi | | - « functions

The ForSyDe methodol ogy offers aset of well-defined process constructors. For example, certain process
constructors are aimed at creating synchronous systems. Synchronous systems are governed by a global
clock and all processes consume and produce exactly one signal event in each clock-cycle.

For instance, mapSY, (wherethe suffix SY standsfor SYncrhonous) isacombinati onal? process constructor.
mapSY takes a function f and creates a process with one input and output signal, resulting from the
application of f to every value in the input.

Figure 4. The synchronous, combinational map process constructor: mapSY

- —

g ma@)SY s

mapSY (f)(< vo, v1, Vo, - - - >) =< f(v), f(v1), f(v2), - >

plusl can, in fact, be defined in terms of mapSY as plusl = mapSY (+1).

ForSyDe also supports synchronous, sequential systems. However, it does not allow loops formed
exclusively by combinational processes, also known as combinational loops, zero-delay loops or feedback
loops, since their behaviour is not aways decidable. Even with that, combinational loops are still possible
if they contain at least one process formed by the delaySYy (k > 0) constructor, which isdefined asfollows.

Figure 5. The synchronous, sequential delay process constructor: delaySY

- —

I _|delaySY, o

— - (SO) —

de/aySYk(<< Vo, Vi, Vo, - >>) =< 80, S0, S0, ---, Vo, V4, Vo, >

k

delaySY takes an initial value 5y and creates a process which appends s, replicated k times, to its input
signal. delaySY provides the basic mechanism with which to build sequentia systems.

Both mapSY and delaySYy are considered primitive process constructors, since they cannot be defined in
terms of simpler ones. Primitive constructors can be combined, forming derived process constructors. For
instance, sourceSY is the result of combining delaySY; (normally denoted simply as delaSY) and mapSy.

2The term combinational comes from Digital Circuit Theory. In the context of ForSyDe, a synchronous process is combinational, as opposed to
sequential, if its outputs don't depend on the history of the input signals. That is, the processis stateless, all output values can only depend on the
input values consumed in the same clock cycle.

ForSyDe tutorial

Figure 6. The sourceSY derived process constructor

sourceSY (f, so)

delaySY ,
(So) B

ol

mapSY (f)

sourceSY(f,sy) =< Sg, f(Sp), f(f(S0)), f(f(f(Sp))), - >

sourceSY takes an initial value sp and afunction f, and creates a sequential process with no inputs and just
one output, resulting from the reiterated application of f to 5.

For example, sourceSY(1,(+1)), isacounter with 1 asitsinitial value.

ForSyDe supplies many other process constructors (e.g. zi pW t hSY, neal ySY ...). However, a
thoroughly description is out of the scope of this tutorial.

3.4. Models of Computation and Domain Interfaces

A Model of Computation (MoC), also known as Computational Model, establishes a set of constraints on
the possible processes and signals contained by a system. A system is said to belong to certain MoC if
it satisfiesits constraints.

The behaviour of a processis observed in its evaluation. The evaluation is divided in atomic steps called
evaluation cycles, during which the process produces and consumes signal values. MoCs specify how and
when evaluation cycles are fired.

ForSyDe currently offers 3 MoCs.

e The Synchronous MoC was aready mentioned in previous section. All systems contain an implicit
global clock. Its cycle matchesthe evaluation cycle of all the system processes, during which they must
consume and produce exactly one value on every input and output signal.

e Untimed MoC. Communication between processes can be thought as a specific variant of
asynchronous, blocking message passing. Thereis no notion of time or global clock.

Contrary to the Synchronous MoC, in which all the system processes evaluate in parallel during every
cycle, untimed processes are fired individually. A process only evaluates when all their inputs have a
minimum number of valuesready to beread. That number may vary between inputs, but isfixed for each
of them. On the other hand, the number of values produced by output signals may vary independently
between evaluation cycles.

e The Continuous MoC models continuous signals representing them as continuous one-variable,
piecewise functions.

ForSyDe tutorial

Figure 7. Continuous signal
< (sin(x),[-10,0)), (-sin(x),[0,10)) >
1,0 1

0,5

-10 -5

90_

ForSyDe specifies a set of process constructors for each MoC. A ForSyDe system is thus guaranteed to
belong to aMoC if it was built using constructors from one of those sets.

Nevertheless, it is possible to build heterogeneous systems, i.e. systems which mix different MoCs. For
that purpose, ForSyDe provides speci a® processes in charge of connecting two subsystems which belong
to different MoCs or which have different timing specifications (e.g. two Synchronous subsystems with
adifferent clock period).

4. Deep-embedded vs Shallow-embedded
signals

As we aready mentioned, ForSyDe is implemented as a Domain Specific Embedded Language (DSL)
on top of Haskell. Actualy, ForSyDe offers two different DSL flavours according to how signals are
modelled.

» Shallow-embedded signals (For SyDe. Shal | ow. Si gnal [http://hackage.haskell.org/packages/
archive/ForSyDe/3.0/doc/html/ForSyDe-Shallow-Signal .htm]) are modelled as streams of data
isomorphic to lists.

data Signal a = NullS | a :- Signal a

3In the sense of belonging to any particular MoC

http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Shallow-Signal.htm
http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Shallow-Signal.htm
http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Shallow-Signal.htm

ForSyDe tutorial

Systems built with them are unfortunately restricted to simulation, however, shallow-embedded signals
provide a rapid-prototyping framework with which to experiment with Models of Computation.

* Deep-embedded signals (For SyDe. Si gnal [http://hackage.haskell .org/packages/archive/
ForSyDe/3.0/doc/html/ForSyDe-Signal.htm]) are used in a similar way to shallow-embedded signals
but are modelled as an abstract data type which, transparently to the end user, keeps track of the system
structure®. Based on that structural information, ForSyDe's embedded compiler can perform different
analysis and transformations such as simulating the system or trandating it to other target languages
(e.g. VHDL and GraphML).

Asadrawback, the deep-embedded API can only currently build systems belonging to the Synchronous

MoC and domain interfaces are not yet supported. This limitation is, however, likely to change in the
future.

5. Using deep-embedded Signals

In this section we go through afew simple sample systems built with ForSyDe's deep-embedded API. We
will create both combinational and sequential systems all belonging to the Synchronous MoC (the only
MoC currently supported by this API).

5.1. Combinational Systems

A system or process is combinational if its outputs are stateless, i.e. they don't depend on past system
events.

5.1.1. A naive combinational system: plusl

We are going to implement plusl, ForSyDe's Hello World, a system with takes integer values, adds 1 to
them and forwards the result through its output signal.

Aswe mentioned previously, the plusl process can be created in terms of the mapSY process constructor.
Here is the signature of napSY in the deep-embedded API.

mapSY :: (ProcType a, ProcType b) =>
Procld -> ProcFun (a -> b) -> Signal a -> Signal b

mapSY works similarly to Haskell's map function. It creates a process which applies a function to every
valueinasignal. Let's have acloser look at its arguments.

Procld The processidentifier, simply atextual tag which univocally identifies the process
created (t ype Procld = String).

ProcFun (a->b) A process function. The function which will be applied to every element in the
input signal. In the case of pl usl we will need a function computationally
equivalentto (+1) .

Both a and b must be instances of Pr oc Type (read Process Type). Pr ocType
isused by ForSyDe's embedded compiler to extract type and structure information
of expressions.

Signal a Input signal.

http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Signal.htm
http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Signal.htm
http://hackage.haskell.org/packages/archive/ForSyDe/3.0/doc/html/ForSyDe-Signal.htm

ForSyDe tutorial

Signal b Output signal.

Now, we are ready to start implementing plusl.

{-# LANGUACE Tenpl at eHaskel | #-}
nmodul e Pl usl where

i mport For SyDe
i mport Data.lInt (Int32)

We need to import ForSyDe'slibrary and | nt 32. Since deep-embedded systems might be later trandated
to hardware, it is required to be specific about the size of integers used (the size of | nt is platform-
specific). Additionally, in all ForSyDe deep-embedded designswe need to tell GHC to enablethe Template
Haskell [http://www.haskell.org/th/] (TH) extension, here is why:

-- A process function which adds one to its input

addOnef :: ProcFun (Int32 -> |nt32)

addOnef = $(newProcFun [d| addOnef :: Int32 -> Int32
addOnef n =n + 1 1)

In the code above, we declared the Pr ocFun needed by mapSY. It simply takes an | nt 32 value and
addsltoit.

Instead of creating a specific DSL to express computations in the deep-embedded model, ForSyDe uses
TH to allow using plain Haskell. In principle, Pr oc Funs can make use of any Haskell feature supported
by TH. However, such features might not be supported or make sense for certain backends (e.g. lists and
thus, list comprehensions, are difficult to support in VHDL). Thus, in this tutorial we will create systems
which are compatible with every backend. For example, writingaddOnef = (+1) instead of addOnef
n = n +1ismorecompact, however the VHDL backend does not currently support sections nor points-
free notation.

In order to use ForSyDeit is not vital to understand what isreally happening, but, for those curious about
it, here is how the TH trick works. First, the[d| .. |] brackets enclosing the function declaration
lift its AST (Abstract Syntax Tree). Then, the AST is used by newPr ocFun to splice (expand in TH's
terminology) a Pr ocFun. It isimportant to note that everything happens at compile-time.

Here istherest of the system definition.

-- System function (sinply a process in this case) which uses addOnef
pluslProc :: Signal Int32 -> Signal Int32
pl usiProc = mapSY "pl uslProc” addOnef

-- Systemdefinition associated to the system function
pl us1SysDef :: SysDef (Signal Int32 -> Signal Int32)
pl us1SysDef = newSysDef pluslProc "plusl"” ["inSignal"] ["outSignal"]

First, we use mapSY to create process. Then we create the final definition of the plusl system with
newSysDef . Hereisits type signature.

http://www.haskell.org/th/
http://www.haskell.org/th/
http://www.haskell.org/th/

ForSyDe tutorial

newSysDef :: (SysFun f) =>f -> Sysld -> [Portld] -> [Portld] -> SysDef f

f A SysFun (system function) describing the system. It results from the combination
of one or more processes. ForSyDe uses a trick similar to Text. Printf [http:/
www.haskell.org/ghc/docs/latest/html/libraries/base/ Text-Printf.html] in order to emulate
variadic functions (different systems are obviously allowed to have different number of
inputs and outputs).

Sysld Textual tag identifying the system. t ype Sysld = String.
[Portld] Listof portidentifiersfor the system inputs and outputs. t ype Portld = String.

Now we can simulate our system, or, aswe will see later on, trandate it to VHDL or GraphML.
simulate :: SysFunToSi nFun sysFun sinmfFun => SysDef sysFun -> sinfun

si mul at e transforms our system definition into a list-based function with the help of a multiparameter
typeclass, SysFunToSi nfun, in charge of implementing the type-level trandation of the system signals
tolists.

$ ghci Plusl. hs

*Plusl> let sinPlusl = simulate pluslSysDef
*Plusl> :t sinPlusl

sinPlusl :: [Int32] -> [Int32]

*Plusl> sinPlusl [1..10]

[2,3,4,5,6,7,8,9, 10, 11]

Simulation is lazy, allowing to work with infinite signals.

*Plusl> take 10 $ sinPlusl [1,1..]
[2,2,2,2,2,2,2,2,2,2]

It isimportant to remark that ForSyDe does not support systems containing combinational loops. If such
aloop isfound, an error will be reported.

For example, hereisasystem containing acombinational loop, built with amutually recursivecall between
two processes adding one to their inputs.

conbLoopSysDef :: SysDef (Signal Int32)
conbLoopSysDef = newSysDef s "combLoop” [] ["out"]
where s = mapSY "addOnel"” addOnef s’

s' = mapSY "addOne2" addOnef s

Aswe mentioned, conbLoopSysDef cannot be simulated.

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Text-Printf.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Text-Printf.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Text-Printf.html

ForSyDe tutorial

*Pl us1> simul ate conbLoopSysDef
*** Exception: detected conbi national | oop
5.1.2. Keypad encoder
Here is a dightly more complex example. We have a keypad with 4 arrow buttons connected to our

synchronous system. The key-presses are sent in the form of a4-bit vector. Each bit indicates whether the
corresponding button is pressed (high value) or not (low value) according to the diagram below.

Figure 8. Keypad encoder

{bo,b1, b2, b3},
v

Encoder

v
Left | Down | Right | Up

In order to work more comfortably and forget about multiple key-strokes at once, we want to encode each
key-press event with aspecific Haskell type: dat a Direction = Left | Down | Right | Up.

Of course, keys are not necessarily pressed all the time. Thus, instead of encoding the input vector into a
signal of Di r ect i on wewill output signals of Abst Ext Di recti on.

data AbstExt a = Abst | Prst a

Abst Ext (read absent-extended) is ForSyDe's equivalent to the popular Haskell type Maybe. It is used
to introduce absent valuesin signals, in our particular case it will denote an absence of key presses.
Hereisthe definition of Di r ect i on together with the necessary imports for the definition of the whole
system.

{-# LANGUACE Tenpl at eHaskel | , DeriveDat aTypeabl e #-}
nodul e Encoder where

i mport For SyDe
i nport Language. Haskel | . TH. Lift (deriveLift1)

10

ForSyDe tutorial

i mport Prelude hiding (Left, Right)

i mport Data. Generics (Data, Typeabl e)

i nport Data. Param FSVec

i mport Data. TypeLevel . Num hiding ((==))

data Direction = Left | Dowmn | Right | Up
deriving (Typeabl e, Data, Show)

$(deriveLiftl "' Direction)

There are afew things worth remarking

» Sincewe are defining new constructorsnamed Lef t and Ri ght , to avoid clasheswith the identically-
named constructors of Ei t her we hide their import from the Pr el ude.

» Weare defining acustom enumerated datatype5 (Di r ect i on) whosevaueswill be carried by system
signals. All thevaluesusedin asystem, and Di r ect i on in particular, must be instances of the private
typeclass Pr oc Type.

class (Data a, Lift a) => ProcType a

-- Sone existing (overl apping) instances of ProcType
instance (Data a, Lift a) => ProcType a

instance ProcType a => ProcType (AbstExt a)
instance (ProcType a, ProcType b) => ProcType (a,b)

ThePr ocType constraint isrequired, among other reasons, to provide type and structural information
of datatypesto ForSyDe's embedded compiler. The overlapping instances are needed to obtain datatype
information regardless of the nesting of valuesin other supported datastructures.

Duetothe(Data a, Lift a) => ProcType a instanceall we needto do in order to use our
custom enumerated datatypes with ForSyDe is creating instances of Dat a (which implicitly requires
an instantiation of Typeabl e) and Template Haskell'sLi f t class.

Fortunately, thanks to a GHC extension it is possible to derive instances for Typeabl e and Dat a
(hence the Der i veDat aTypeabl e language pragma). Additionally, ForSyDe provides a Template
Haskell module Language. Haskel | . TH. Li f t ® to automatically generate instancesof Li f t . In
this case, since we needed to instantiate a single datatype, we used der i velLi ft 1.

e The rest of the imports (Data.Param FSVec and Data. TypelLevel . Nun) come
from the paraneterized-data [http://hackage haskell.org/cgi-bin/hackage-scripts/package/
parameterized-data] and t ype- | evel [http://hackage.haskell.org/cgi-bin/hackage-scripts/package/
type-level] packagesin order to support fixed-sized vectors.

Here is the code of the process function, needed to encode the button presses:
encoder Fun :: ProcFun (FSVec D4 Bit -> AbstExt Direction)

encoder Fun = $(newProcFun
[d] encode :: FSVec D4 Bit -> AbstExt Direction

11

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parameterized-data
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/type-level

ForSyDe tutorial

dO0 == H then Prst Left else
dl == H then Prst Down else
d2 == H then Prst Right else
d3 == Hthen Prst Up else Abst |])

encode v = if
i f
i f
i f

< < < <

The code should be self-explanatory, it makesuse of thetypeFor SyDe. Bi t . Bi t , with dataconstructors
L (low) and H (high), and of vectors of size 4 (hencethe D4 type parameter). In order to get adeeper insight
on how FSVecs work, check Appendix A, FSVecs: Vectors parameterized in size. It is important to
note that the system does not take simultaneous key-strokesin account, choosing the direction with higher
precedence (i.e. situated in the outermost i f expression). Also, using pattern matching with multiple
function clauses instead of nested i f expressions would had been more clear. However, the VHDL
backend currently only supports one clause.

Hereisthe remaining code needed to build the rest of the system.

encoderProc :: Signal (FSVec D4 Bit) -> Signal (AbstExt Direction)

encoder Proc = mapSY "encoder" encoder Fun

encoder SysDef :: SysDef (Signal (FSVec D4 Bit) -> Signal (AbstExt Direction))
encoder SysDef = newSysDef encoderProc "KeypadEncoder" ["arrowBits"] ["direction"]

Finally, we can evaluate some simulations.

$ ghci - XTenpl at eHaskel | Encoder. hs

*Encoder > | et sinEncoder = sinul ate encoder SysDef

*Encoder> :t si mEncoder

si meEncoder :: [FSVec D4 Bit] -> [AbstExt Direction]

*Encoder > si nEncoder [$(vectorTH[L,H L,L]), $(vectorTH[L,L,L,L])]
[Down, _]

5.2. Sequential Systems

Now we are going to have a look at a couple of sequential systems, whose outputs, contrary to
combinational systems, can depend on the system history (i.e. can have a state).

5.2.1. A naive sequential system: counter
Our goal isto generateasigna whosevalues match itstagsor, moreintuitively, acounter from 1toinfinity.
Thisis clearly a sequentia system since its output signal is not stateless, each output value depends on
the previous one.
{-# LANGUACE Tenpl at eHaskel | #-}

nodul e Counter where

i mport For SyDe
i mport Data.lInt (Int32)

12

ForSyDe tutorial

i mport Plusl (addOnef)

counterProc :: Signal Int32
counterProc = out'
wher e out mapSY "addOneProc" addOnef out'’

out’ del aySY "del ayOne” 1 out

count er SysDef :: SysDef (Signal Int32)
count er SysDef = newSysDef counterProc "counter” [] ["count"]

WereuseaddOnef from previousexamples. Thecounter isbuilt by themutually recursive callsof mapSY
and del ay SY which should be interpreted as parallel equations.

Again, we can lazily simulate the system.

$ ghci Counter. hs

*Counter> :t simulate counter SysDef

simul ate counterSysDef :: [Int32]

*Pl us1> sinul ate counter SysDef
[1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17
AC Interrupted

Actualy, the definition of count er Pr oc can be simplified by using sour ceSY, getting the following
equivalent declaration.

counterProc :: Signal Int32
count er Proc = sourceSY "counterProc" addOnef 1

5.2.2. Serial full adder

A seria full adder which adds two streams of bits is a, still simple, but more elaborated example of a
sequential system. Our system will receive pairs of bits which will be added together, taking the resulting
carry of last cyclein account.

We are going to implement it asaMealy FSM (Finite State Machine) following the diagram below.

Figure9. Full Adder: Mealy Machine

(H,H)/L

(L,L)/L (L,H)/L
(L,H)/H (L.L)/H (H,L)/L
(H,L)/H (H,H)/H

13

ForSyDe tutorial

ForSyDe provides derived process constructors to implement FSMs, in this case we will be using
neal ySY.

meal ySY :: (ProcType c, ProcType b, ProcType a) =>
Procld
-> ProcFun (a -> b -> a)
-> ProcFun (a -> b -> ¢)
-> a
-> Signal b
-> Signal c

Procld The processidentifier, used in the sameway asin therest of the process
constructors (e.g. mapSY and del aySY).

ProcFun (a- > b -> a) A processfunction in charge of calculating next state based on current
state and current input.

ProcFun (a -> b -> c) A process function in charge of calculating current output based on
current state and current input.

a Initial state.
Signal b Input Signal.
Signal c Output Signal.

Here isthe Haskell code, which should be straightforward to understand.

{-# LANGUACE Tenpl at eHaskel | #-}
nodul e Ful | Adder where

i mport For SyDe

faNextState :: ProcFun (Bit -> (Bit,Bit) -> Bit)
faNext State = $(newProcFun
[d] faNextState :: Bit -> (Bit,Bit) -> Bit
faNext State st input =
if st == L then
case i nput of
(H H ->H
_-> L
el se
case i nput of
(L,L) ->L
_->H
1)

faQut :: ProcFun (Bit -> (Bit,Bit) -> Bit)
faQut = $(newProcFun
[d] faQut :: Bit -> (Bit,Bit) -> Bit
faQut st input =

14

ForSyDe tutorial

if st == L then
case i nput of
(L, L) ->L
(L, H ->H
(H L) ->H
(H H ->L

el se
case i nput of
(L, L)y ->H
(L, H ->L
(H L) ->L
(H H ->H

1)
faProc :: Signal (Bit,Bit) -> Signal Bit
faProc = neal ySY "addProc" faNextState faCQut L
faSysDef :: SysDef (Signal (Bit,Bit) -> Signal Bit)
faSysDef = newSysDef faProc "full Adder" ["opl", "op2"] ["res"]

Hereisalittle test.

*Ful | Adder> let sinfa = simulate faSysDef
*Ful | Adder> sinfa [(L,L),(L,H,(HH, (L L)]
[L,H L, H

*Ful | Adder >

5.3. Using components

A desired characteristic of any system design language is the possibility of creating hierarchical models.

In ForSyDe's deep-embedded DSL, hierarchical design isimplemented through components, let's see an
example.

Figure 10. AddFour system

AddFour

in1 » mapSY mapSY mapSY mapSY >
EXVRN g RRESTHN g IESTRN e ES outt

The system above which, admittedly, would not be of much use in the real world, adds 4 to itsinput in
serial steps of 1.

Instead of creating 4 different processes and connecting them together, we can reuse the design of plusl
placing 4 identical components.

15

ForSyDe tutorial

ForSyDe provides a primitive to create components or instances of asystem: i nst anti at e.
instantiate :: (SysFun f) => Procld -> SysDef f ->f

i nst anti at e createsacomponent out of asystem definition. A component can be considered a special
process (hencethe Pr ocl d parameter) containing an instance of its parent system (the system from which
it is created).

Instances behave identically to their parents and can be combined with other system processes.

For example, here we create and simulate an instance of plusl

$ ghci Plusl. hs

*Plusl> :t pl uslSysDef

pl us1SysDef :: SysDef (Signal Int32 -> Signal Int32)

*Plusl> |l et pluslConpl = instantiate "plusl_ 1" pl uslSysDef

*Plusl> :t pluslConmpl

pl us1lSysDef :: Signal Int32 -> Signal Int32

*Plusl> | et nestedPlusl = newSysDef pluslConpl "nestedPl usl” ["inl"] ["outl"]
*Plusl> sinmulate nestedPlusl $ [1, 2, 3, 4]

[2,3,4,5]

And hereisthe definition of the AddFour system.

nmodul e AddFour where
i mport Plusl (pluslSysDef)

i mport For SyDe
i mport Data.Int (Int32)

addFourProc :: Signal Int32 -> Signal Int32
addFour Proc = pluslConmp "plusl_1" .

pl usiConp "plusl_2"

pl usiConp "plusl_ 3"

pl usi1Conp "plusl_4"
where pluslConp id = instantiate id pluslSysDef

addFour SysDef :: SysDef (Signal Int32 -> Signal Int32)
addFour SysDef = newSysDef addFourProc "addFour™ ["inl"] ["out1l"]
Components, just like any other process, arefunctionsover signals. Thisallowsusing all the combinatorial

power of Haskell. In this particular case we have just used function composition.

Here is the general workflow of ForSyDe modelling, including the use of components.

16

ForSyDe tutorial

Figure 11. Component wor kflow

Create process functions
(newProcFun)

ProcFun (al ->..-> an)

Create system function
(possibly using process constructors i.e.
mapSY etc)

sysF :: Signal il ->
Signal i2 ->

Signal in ->
(Signal ol, Signal o2, .. Signal om)

Vn,m € N U {0}

Create System Definition
(newSysDef)

sysDef :: SysDef (Signal il ->
Signal i2 ->
Signal in ->
(Signal ol, Signal o2, .. Signal om))

Vn,m € N U {0}

-
Create an instance ‘Backends
(simulate etc)

(instantiate) \ ~a

1. Thedesigner describes computations using process functions (Pr oc Funs).

2. Those process functions, possibly with other constants, are passed to process constructors in order to
build processes which are combined together, creating the main process function.

3. The system function is transformed into a system definition by newSy s Def .
4. The system definition can be

» passed to ForSyDe's embedded compiler, capable of simulating or trandating it to other target
languages (VHDL or GraphML at the time being).

* used to create components, bringing us back to step 2.

17

ForSyDe tutorial

5.4. VHDL Backend

ForSyDe's embedded compiler is able to translate system definitionsto VHDL. That is done through the
wri t eVHDL* functions.

witevVHDL :: SysDef a -> 10 ()
witeVHDLOps :: VHDLOps -> SysDef a -> 10 ()

For example, thisis how we would generate the VHDL definition of AddFour and write it to disk.

$ ghci AddFour. hs

* AddFour > writ eVHDL addFour SysDef
* AddFour > : g

Leavi ng GHGi .

$ |I's -R addFour

vhdl

addFour/ vhdl :
addFour _|ib work

addFour/ vhdl / addFour _l i b:
addFour _| i b. vhd

addFour/ vhdl / wor k:
addFour . vhd plusl. vhd

Here isadiagram of the filetree generated for addFour .

18

ForSyDe tutorial

Figure 12. VHDL filetree of addFour

Forsyde lib.

[

I
t;ddFoulj' I l

I

I

|

I

; -_;_: - vhd
| VHDL
i
I -L_Lb . Wor‘k
| = ==
I‘*'{ f;;d- \\
- - -
addFCi/Uhr'd—hb' addFour.vhd plusl.vhd

wr i t eVHDL generates aVHDL filetree pending from current working directory. Assuming $SYSNAVE
isthe system's name (addFour in this particular case):

Themain VHDL entity and architecture iswritten in $SYSNAMVE/ vhdl / wor k/ $SYSNAME. vhdl .

The VHDL trand ation of other systems included through component instantiation is also written under
$SYSNAME/ vhdl / wor k/ . In the case of the addFour system, the compiler also generates the file
pl usl. vhd.

A global VHDL library, f or syde_l i b. vhd, is bundled with ForSyDe's distribution and contains
the trandation of basic monomorphic Haskell typesto VHDL. It isinstaled under the dat a directory
of ForSyDe's Cabal package, whose location is system-dependent.

Since VHDL lacks support for parametric polymorphism, the tranglation of polymorphic types and
functionsis done on aper-system basis (i.e. each different possible monotype of a polymorphic Haskell
type triggers a different translation). Thus, the result of that trandlation is put in $SYSNAME/ vhdl /
i b/ $SYSNAME |i b. vhd andnotforsyde_lib. vhd.

It is important to remember that, even if ForSyDe signals are polymorphic and Pr oc Funs can include
any Haskell function definition, some backends might be limited. In the case of the VHDL backend:

Accepted Si gnal types. Si gnal aisavalid signal for the VHDL backend if a belongs to:

1. Primitivetypes: Dat a. | nt {8, 16, 32}, Bool , For SyDe. Bi t .

19

ForSyDe tutorial

2. Custom types: enumerated’ types.

3. The following containers, which can hold any primitive or custom type and can be unrestrictively
nested: Dat a. Par am FSVec, tuples of unlimited size®,

 Although this will hopefully change in the future, the declarations contained by Pr oc Funs must be
fairly simple. For instance:

1. Points-free notation is not admitted.
2. They can only contain a clause, multiple clauses are not accepted.

Getting back to the function interface of the VHDL backend, it is possible to provide certain compilation
options, namely to integrate Altera's Quartus || and Modelsim in our workflow. For that purpose we will
usew i t eVHDLOps.

For example, we can generate aQuartus 11 project and compile the generated VHDL code setting
certain configuration options such as the pin-mapping and the FGPA model to be used.

conpil eQuartus :: 10 ()
conpi l eQuartus = witeVHDLOps vhdl Ops addFour SysDef
where vhdl Ops = defaul t VHDLOps{ execQuartus=Just quartusQOps}
quartusQOps = QuartusQOps{acti on=Ful | Conpi |l ati on,
f Max=Just 50, -- in Mz
f pgaFami | i yDevi ce=Just ("Cyclonell",
Just "EP2C35F672C6"),
-- Three sanple pin assignments
pi nAssi gs=[("inl[0]", "PIN W"),
("inil[1]", "PIN_W"),
("inl[2]", "PIN.W")]}

The code above generates the VHDL code for the addFour system, subsequently creating a Quartus
project and running afull compilation of the project. We set a minimum acceptable clock frequency of 50
MHz, the FPGA family (Cycl onel 1), specific device (EP2C35F672C6) and some pin assignments,
which, for briefness sake are not sufficient.

It is important to note that, when needed, Quartus will split input and output port identifiers into several
logical names corresponding to individual bits (e.g in1[Q]). Thus, it might be necessary to open Quartus
in order to find out what logical names to use in pin assignments.

In addition to Quartus II, the VHDL backend is able to interface with ModelSm. For example, the
following function shows how can we automatically compile the generated VHDL code with ModelSim.

conpil eModel Sim:: 10 ()
conpi | eMbdel Sim = writeVHDLOps vhdl Ops addFour SysDef
where vhdl Ops = def aul t VHDLOps{ compi | eModel si m=Tr ue}

It isalso possible to run test benchesin ModelSim.

wri t eAndMbdel si mivHDL :: (SysFunTol OSi nfFun sysF sinfF) =>

20

ForSyDe tutorial

Maybe Int -> SysDef sysF -> sinF
wr it eAndMbdel si MVHDLOps :: (SysFunTol GSi nFFun sysF sinF) =>
VHDLOps -> Maybe Int -> SysDef sysF -> sinF

Here are two examples:

$ ghci AddFour. hs

*AddFour > | et vhdl Sim = witeAndMvbdel si mMivHDL Not hi ng addFour SysDef
*AddFour> :t vhdl Sim

vhdl Sim:: [Int32] -> 10 [Int32]

*AddFour > vhdl Sim [1.. 10]

[4,5,6,7,8,9,10, 11,12, 13, 14]

Inthe exampleabove, wesimulateaddFour without supplying alimit inthe number of cyclesto simulate.
wri t eAndModel si mvHDL isstrict, so, without alimit it will only work with finite input stimuli.

$ ghci Counter. hs
*Counter> writeAndModel si mivHDL (Just 20) count er SysDef
[1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

In this case the system does not have any inputs and thus the simulation implicitly resultsin infinite output
stimuli. Thus, it is necessary to set alimit in the number of cyclesto simulate.

In agenera way, thewr i t eAndModel si mivHDL* functions, generate a simulation function which will
1. Generate aVHDL modéd (implicitly using thewr i t e VHDL* functions).

2. Compile the resulting model with ModelSim.

3. Marshal the provided input stimuli from Haskell to VHDL and generate a testbench in $SYSNAME/
vhdl / t est / $SYSNAME_t b. vhd.

4. Simulate the testbench with Model Sim and unmarshal the results back to Haskell.
wri t eAndMbdel si miVHDL* give equivalent resultsto si nmul at e, with afew cavests.

 writeAndMvbdel si nvHDL*, unlike si mul at e, are strict, and thus do not support infinite stimuli.
For that reason, it is possible to set the number of cyclesto simulate (Maybe | nt parameter).

* writeAndvbdel si mVHDL* , provide | Osimulation functions whereassi mul at e is pure.

« witeAndModel si nivVHDL* suffer all the limitations of the VHDL backend whereas si nmul at e
can cope with any system.

5.5. GraphML Backend

It is possible to use ForSyDe's GraphML backend in order to

1. Generate an XML -based intermediate representation of a system for further processing.

21

ForSyDe tutorial

2. Obtain system diagrams.
ForSyDe provides the following functions, similar to the ones of the VHDL backend.

witeGaphM :: SysDef a -> 10 ()
witeG aphM.Qps :: G aphM.Ops -> SysDef a -> 10 ()

For example, hereis how we would generate the GraphML trandation of addFour

$ ghci AddFour. hs

* AddFour > writeG aphM. addFour SysDef
* AddFour > : q

Leavi ng GHGi .

$ |I's -R addFour

graphm

addFour/ graphmn :
addFour . graphm pl usl. graphm
As we can seg, a. graphnl fileis generated for each system involved. In this case, one for the main

system (addFour . gr aphmnl) and another one for pl us1 which was instantiated by addFour .

In order to embed ForSyDe metai nformation, the GraphM L backend makes use of thefollowing GraphML -
Attributes [http://graphml.graphdrawing.org/primer/graphml-primer.html#Attributes]:

<key i d="process_type" for="node" attr.nane="process_type" attr.type="string"/>
<key id="value_arg" for="node" attr.nane="value_arg" attr.type="string"/>

<key id="procfun_arg" for="node" attr.nanme="procfun_arg" attr.type="string"/>

<key i d="instance_parent" for="node" attr.name="instance parent" attr.type="string

The keys above are used to tag nodes in different ways.

» process_t ype indicates what process constructor was used to create a process node or if the node
isan input or output port.

« val ue_ar g contains avalue passed to a process constructor.
» procfun_ar g contains avalue passed to a process constructor.

* i nstance_par ent isspecific to component nodes and indicates the name of the parent system from
which the component was instanciated.

5.5.1. Obtaining diagrams of ForSyDe

The GraphML definition does not provide a way to specify the graphical representation of graphs (e.g.
edge and node shapes, colours, textua tags ...)

For that reason, yWorks [http://www.yworks.com], a company offering graph visualization products,
created yFiles-GraphML, an extension to the GraphML schema which adds graphical information.

22

http://graphml.graphdrawing.org/primer/graphml-primer.html#Attributes
http://graphml.graphdrawing.org/primer/graphml-primer.html#Attributes
http://graphml.graphdrawing.org/primer/graphml-primer.html#Attributes
http://www.yworks.com
http://www.yworks.com

ForSyDe tutorial

yWorks also distributes yEd [http://www.yworks.com/en/products yed about.html], a free (as in beer)
multiplatform graph editor with impressive automatic layout features.

Here is an example on how to generate and edit yFiles-GraphML diagrams from ForSyDe systems. For
this purpose, we will use our counter system.

$ ghci Counter. hs

*Counter> witeGaphM.Ops defaul t GaphM.Ops{yFi | esMar kup=True} count er SysDef
*Counter> :q

$ Is -R counter

graphm

count er/ graphm :
count er. graphm sour ceSY_count er Proc. graphni
sour ceSY_count er Proc. gr aphm contains the sourceSY process used in the counter. Let's view

its representation with yEd.

This is the unorganized representation we get right after opening
sour ceSY_count er Proc. gr aphm with yEd.

Figure 13. Initial yEd representation

All nodes are overlapped because the GraphML-yFiles backend does not perform any kind of node
placement nor edge routing. YEd, however, does avery good job in thisregard.

Before running a layout algorithm it is convenient to set port constraints on the graph nodes. Thisis a
workaround to makeyEd faithfully represent shared signal s (signal s coming from the same process output),
otherwise yEd will treat them as different outputs. The GraphML format (and GraphML-yFiles) allows
edge sharing through the use of ports, however, yEd does not currently respect them. Our current solution
is to set alocation for the edge ends in the GraphML backend and lock that location through yEd port
constraints.

In order to set the port constraints we will go to Tools-> Constraints -> Port Constraints.

The port constraints menu will initially look like this.

23

http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html

ForSyDe tutorial

Figure 14. Port constraints default options

Configuration Method [From Sketch I-é-]
Side At Source Top '+
Side At Target Top '+
Fix Source Port O
Fix Target Port]
Act on [All Ports H
Remaove all Port Constraints ||
E Ok) [: Reset) (Cancel) [: Dock)

These are the options we need to set in order to fix all ports. Remember to click on OK after setting them.

Figure 15. Desired port constraint options

Configuration Method [Enter Manually I.;.]
Side At Source [Left I.;.]
Side At Target [Right B
Fix Source Port [
Fix Target Port a
Act on [All Ports H
Remaove all Port Constraints ||
E—ﬁk—a [: Reset) (Cancel) [: Dock)

It is important to note that due to a bug in yFiles format it is not possible to save port constraints in
. graphm files. Thus, we will need to reset the port constraints every time afile is reopened.

Now we are ready to run an automatic layout algorithm. The generated GraphML-yFilesgraphis prepared
to be displayed from left to right. The hierarchical layout (Layout -> Hierarchical -> Classic) seemsto
give the best results for system diagrams. It isimportant to set the Orientation to Left to Right and alow
Backloop Routing.

24

ForSyDe tutorial

Figure 16. hierarchical layout

[Layout | MNode Rank Node Order Labeling >

Minimal Layer Distance 40
Minimal Node Distance 20
Minimal Edge Distance 10

Minimal First Segment Length | 5p

Maximal Duration (sec) 5
Orientation [Left To Right H
Mode Placement [Linear Segments)
Edge Routing [Polyline H‘l
Backloop Routing]
Act On Selection Only O

E—H (Reseat) (Cancel) (Dock :j (Help)

After clicking on OK, the system diagram should look like this:

Figure 17. Final yEd representation

DelaySY
"delay"
val=1

—>># outl

5.5.2. GraphML limitations
Unfortunately, GraphML nor yFiles-GraphML + yEd suit all ForSyDe needs:
* yFiles does not respect GraphML ports (source signal sharing). We provide a workaround based on
precal culate the location of edge ends plus yEd routing port constraints (which unfortunately cannot
be saved).

» yEd wipes out external <dat a> tags (external GraphML attributes). That includes ForSyDe's
metainformation, which will be lost after editing the graph with yEd.

25

ForSyDe tutorial

e GraphML nor yFiles-GraphML explicitly support subgraphs but not subgraph sharing (components).
Our solution is to use external <data> tags indicating parent systems in instance nodes. However, yEd
is obviously unaware of that trick, not being able to offer hierarchical browsing.

6. Shallow-embedded signals

As it was previously mentioned, ForSyDe offers a flavour of signals called shallow-embedded signals,
modelled as streams of data:

data Signal a = NullS | a :- Signal a

This representation offers some advantages:

» Rapid prototyping of systems.

* Itiseasy toinclude new MoCs.

* It supports al the MoCs covered by ForSyDe (Synchronous, Untimed and Continuous).
Shallow-embedded signals also present some disadvantages:

» Systems built with them can only be simulated. Shallow-embedded signals don't contain any structural
information. Thus, the models resulting from them cannot be analyzed or compiled to other target
languages.

» No support for components. However, they are not really needed, components are not useful for
simulation and reusability can be achieved by function refactoring.

Here is the implementation of plusl using shallow-embedded signals.

nodul e Pl uslShal | ow where
i mport For SyDe. Shal | ow
i mport Data.lnt(lnt32)

plusl :: Signal Int32 -> Signal Int32
pl usl = mapSyY (+1)

The system can be simulated directly simply by calling plusl.

$ ghci Pl usl1Shal | ow. hs

*Pl usiShal | ow> :t signal

signal :: [a] -> Signal a

*PlusiShal | ow> plusl (signal [1..10])
{2,3,4,5,6,7,8,9, 10, 11}

We can a so integrate deep-embedded model sinto shallow-embedded onesby using si mul at e, si gnal
andf rontSi gnal (theinverseof si gnal). Intheexamplebelow, we use the deep-embedded addFour
system and the shallow-embedded pl us1 to build pluss

26

ForSyDe tutorial

nodul e Pl us5 where

i mport Pl usl1Shal |l ow
i mport AddFour

i mport For SyDe (sinul ate)
i mport For SyDe. Shal | ow

i mport Data.lInt (Int32)

plus5 :: Signal Int32 -> Signal Int32
plus5 = plusl . signal . sinmulate addFourSysDef . fronSi gnal

$ ghci Pl us5. hs
*Plus5> plus5 (signal [1..10])
{6,7,8,9,10, 11, 12, 13, 14, 15}

A. FSVecs: Vectors parameterized in size
1. Goal

We would like to numerically parameterize vectors using their length in order to implement fixed-sized
vectors (FSVec). Ideally, we would like to be able to implement something similar to this:

v :: FSVec 23 Int -- Not Haskell

v would be aavector containing 23 | nt s. Noteit is not possible to directly do thisin Haskell.

The vector concatenation function would be something along the lines of:
(++) :: FSVec sl a -> FSVec s2 a -> FSVec (sl+s2) a -- Again, not valid Haskell

Wewould also like to establish static security constraints on functions. Those constrainswould be checked
at compile time guaranteeing a correct behaviour during runtime. For instance.

head :: FSVec (s > 0) a -> FSVec (s - 1) a -- Not Haskell

However, Haskell does not support dependent types (a numerically parameterized-vector is in practice
a dependent type) nor type-level lambdas directly. Yet, it is still possible to implement our FSVec type
using Haskell plus afew GHC extensions.

2. How?

Before diving into the details, let me spoil the final result:

27

ForSyDe tutorial

v :: FSVec D23 Int
(++) :: (Nat s1, Nat s2, Add sl s2 s3) => FSVec sl a -> FSVec s2 a -> FSVec s3 a

head :: Pos s => FSVec s a -> a

The code is abit more verbose that the pseudo-Haskell code of previous section, but note that it is Haskell
code (using the Multiparameter class extension).

Thetrick isto emulate the parameters using type-level decimal numerals. But, What is that?

3. Type-level decimal numerals

We already mentioned that the trick is to use types to represent the size of the vector. So, we want atype
parameter to represent a number, but, How?

-- Numerical digits
data DO -- enpty type (supported by a EnptyDataDecls GHC extension,
-- we coul d have included a phony constructor otherw se)
data D1
data D2

data D9
data a :* b -- connective to build nultidigit nunmerals (enpty again)
-- note that the type constructor is infix (GHC TypeQperators extensio

Using the definitions above we can represent arbitrarily-sized natural numbers. Some examples:
Number: 0

Type-level representation: DO

Number: 13

Type-level representation: D1 : * D3

Number: 1024

Type-level representation: D1 :* DO :* D2 :* D4

It seems sensible, but very verbose. It would certainly be nicer to be able to express 0 as DO, 13 as D13
and so on.

We solved the problem by using Template Haskell to generate type synonyms (aliases) up to D5000.
The same trick was used to emulate binaries (up to BL0O0O00000000), octas (up to O10000) and
hexadecimals (up to HLO00):

$ ghci - XTypeOperators - XFl exi bl eContexts # Extensions used in different parts of
Prel ude> : m +Dat a. TypelLevel
Prel ude Data. TypeLevel > :i D124
type D124 = (D1 :* D2) :* D4
-- Defined in Data. TypeLevel . Num Al i ases
Prel ude Data. TypelLevel > :i HFF
type HFF = (D2 :* D5) :* D5
-- Defined in Data. TypeLevel . Num Al i ases

28

ForSyDe tutorial

Prel ude Data. TypeLevel > :i B101
type B101 = D5 -- Defined in Data. TypeLevel.Num Al i ases

Of course, if you want to use a numeral which is out of the aliases range, the only option is to use the
verbose decimal representation (it shouldn't be the normal case though)

Similarly to D13, D124 ... undercase value-level aliases (d12, d123, .. declared as undef i ned) are
generated in order to create type-level values.

Prel ude Data. TypeLevel > :i d123
di23 :: (D1 :* D2) :* D3 -- Defined in Data. TypeLevel . Num Al i ases

Fair enough. However, you might aready have guessed that : * can be used to construct ambiguous or
not-normalized numerals, for instance:

DO :* DO :* DL -- nuneral with trailing zeros
(D1 :* DO) :* (D2 :* D2) -- nalformed nuneral

Now iswhen the natural (Nat) and positive (Pos) type-classes get in the game. We are going to omit the
instances but, trust us, they guarantee that numerals are well-formed:

class Nat n where
toNum:: Numa =>n -> a

class Nat n => Pos n

t oNumallows to pass the type-level numeral to value-level.

Prel ude Data. TypeLevel > t oNum d123
123
-- a non-normalized nuneral
Prel ude Data. TypeLevel > toNum (undefined :: DO :* D1)
<interactive>: 1:0:
No i nstance for (Data. TypeLevel.Num Sets. Posl DO)
arising froma use of "toNuml at <interactive>:1:0-28
Possi bl e fix:
add an instance declaration for (Data. TypeLevel.Num Sets. Posl DO)
In the expression: toNum (undefined :: DO :* D1)
In the definition of “it': it = toNum (undefined :: DO :* D1)

Based on the numerical representation we created, and using multiparameter type-classes, we can define
type-level operations. The operations supported right now are:

* Arithmetic: Successor, Predecesor, Addition, Subtraction, Multiplication, Division, Modulus, Greatest
Common Divisor, Exponentiation and L ogarithm.

» Comparison: trichotomy classification, (<), (>) (<=), (>=), (==), Minimum and Maximum.

29

ForSyDe tutorial

Some examples:

Prel ude Data. TypeLevel > :i Data. TypeLevel . di vMod

Dat a. TypeLevel .divMod :: (DivMod x y g r) =>Xx ->y -> (q,)
-- Defined in Data. TypeLevel . Num Ops

Prel ude Data. TypelLevel > d23 " Dat a. TypeLevel . di vMod™ d2

(11, 1)

Note that the resulting type is calculated at compile time:

Prel ude Data. TypeLevel > :t d23 "Data. TypeLevel . di vMod™ d2
d23 " Data. TypeLevel .divMbd® d2 :: (D1 :* D1, D1)
d23 " Data. TypeLevel .divMbd® d2 :: (D1 :* D1, D1)

Note as well that the operations are consistent, we cannot, for instance, calculate the predecessor of zero:

Prel ude Data. TypelLevel > Dat a. TypeLevel . pred dO

<interactive>:1:0:
No i nstances for (Data. TypeLevel.Num Ops. Failure
(Dat a. TypeLevel . Num Ops. Predecessor Of Zer oError x),

[..]

We can even add constraints to our own functions. For instance, we want to guarantee (at compilation
time) that atype-level numeral number islower than 6 and greater than 3.

Prel ude Data. TypeLevel > |l et check :: (Nat x, x :<: D6, x :;> D3, Numa) => x -> a
For example, 2 does not meet the constraints.

Prel ude Dat a. TypelLevel > check d2
<interactive>: 1:0:

Coul dn't match expected type “~CGI' against inferred type "CLT
[..]

Whereas 4 does

Prel ude Data. TypeLevel > check d4
4

4. Fixed Sized Vectors themselves

Getting back to fixed-sized vectors themselves, FSVec offers a reasonably rich
vector API [http://hackage.haskell .org/packages/archive/parameterized-data/0.1.2/doc/html/Data-Param-
FSVec.html] based on type-level numerals.

30

http://hackage.haskell.org/packages/archive/parameterized-data/0.1.2/doc/html/Data-Param-FSVec.html
http://hackage.haskell.org/packages/archive/parameterized-data/0.1.2/doc/html/Data-Param-FSVec.html
http://hackage.haskell.org/packages/archive/parameterized-data/0.1.2/doc/html/Data-Param-FSVec.html
http://hackage.haskell.org/packages/archive/parameterized-data/0.1.2/doc/html/Data-Param-FSVec.html

ForSyDe tutorial

For example, we can safely access the elements of avector without the risk of getting out-of-boundserrors.
(') :: (Pos s, Nat i, i :<: s) =>FSVec s a->i ->a

The best part of it isthat the bound checks are performed on the type level at compilation time, not adding
any overhead to the execution of our code.

Pr el ude Data. TypeLevel > : m +Dat a. Par am FSVec
Prel ude Data. TypeLevel Data.Param FSVec> $(vectorTH[1::1nt,2,3]) ! dO
1
Prel ude Data. TypeLevel Data.Param FSVec> $(vectorTH[1::1nt,2,3]) ! d7
<interactive>: 1:0:

Couldn't match expected type LT against inferred type "~ GI'

When using functional dependencies to conbine

Trich D7 D3 GT,

[..]

vect or THis a Template Haskell function to create vectors out of lists, we will get back to why TH is
needed later. dO and d7 are declared as undef i ned (bottom) and force the inference of the DO and
D7 type-level values. Note that the explicit type signatures are needed due to Haskell's monomorphism
restriction, in the general non-interactive code does not need this kind of type annotations.

Warning

Using numerical literals instead of the undef i ned values (e.g. 0 and 7 instead of dO and d7)
isavery common error.

Here are two further examples using head.
Prel ude Data. TypeLevel Data.Param FSVec> Dat a. Par am FSVec. head $(vectorTH [1::Int,
1
Prel ude Data. TypeLevel Data.Param FSVec> Dat a. Par am FSVec. head enpty
<interactive>: 1:0:
No i nstance for (Data. TypeLevel.Num Sets. Posl DO)
arising froma use of "Data.Param FSVec. head'

Again, attempting to obtain the head of an empty vector triggers a compile-time error.

Even if FSVec offers many nice features, it also has afew problems.

5. FSVec issues

1. Some functions such asfi | t er cannot be implemented. One can think about something along the
lines of :

filter :: (a -> Bool) -> FSVec s a -> FSVec s2 a

31

ForSyDe tutorial

However, the size of the output vector (s2) cannot be precalculated statically.

. Since FSVec is an abstract data type, pattern matching is lost, but that is the general case in vector
implementations 1

. Itisdifficult to build avector from alist. Again, the first thing one would think of would be
vector :: Nat s =>[a] -> FSVec s a

However, since s would be a different type depending on the length of [@] , thisis not avalid Haskell
function. s isexistentially quantified, afeature not supported directly by Haskell98.

In addition, since the list-length is a run-time condition, it isimpossible to guess at compile time.
However, there are afew workarounds which are already included in the library:

a As suggested in Eaton's Statically Typed Linear Algebra in Haskell [http://ofb.net/~frederik/
vectro/draft-r2.pdf], emulate an existential through CPS [http://en.wikibooks.org/wiki/Haskell/
Continuation_passing_style] (Continuation passing style). CPS is a style of programming where
functions never return values, but instead take an extra parameter which they give their result to.

vectorCPS :: Nat s => vectorCPS :: [a] -> (forall s. Nat s => FSVec s a -> w)

Note that the f or al | keyword is due to using Rank2 types to emulate the existential. You don't
really need to understand how they work but just know to use vectorCPS. Here is an example:

$ ghci

Prel ude> : m +Dat a. Par am

Prel ude Data. Param (vectorCPS [1, 2, 3,4]) Data.Param | ength
4

Note that length is passed to the result of vect or CPS and not the other way around.

b. Unsafely provide the length of the resulting vector:
unsafeVector :: Nat s => s ->[a] -> FSVec s a

unsaf eVect or does not suffer the "existential type" problem of vect or CPS, however it can
happen that the dynamic length of thelist does not match the provided length (that iswhy the function
namehasan "unsafe" prefix). Furthermoreif that isthe case, wewill only be able to know at runtime.

Prel ude Dat a. Parane : m +Dat a. TypeLevel

Pr el ude Dat a. Param Dat a. TypeLevel > unsaf eVector d8 [1, 2]

*** Exception: unsafeVector: dynam c/static |length m smatch
Pr el ude Dat a. Param Dat a. TypeLevel > unsaf eVector d2 [1, 2]

<1, 2>

32

http://ofb.net/~frederik/vectro/draft-r2.pdf
http://ofb.net/~frederik/vectro/draft-r2.pdf
http://ofb.net/~frederik/vectro/draft-r2.pdf
http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style
http://en.wikibooks.org/wiki/Haskell/Continuation_passing_style

ForSyDe tutorial

c. Template Haskell.

Thisisthe preferred solution. The only problem isthat, of course, the TH extension is required (but
we aready had that dependency in ForSyDe) and you can only use it with lists which are available
at compile time (which, for the general case of ForSyDe designs should not be a problem).

$ ghci - XTenpl at eHaskel |
Pr el ude> : m +Dat a. Par am

Prel ude Data. Parant $(vectorTH [1 :: Int,2,3,4])
Prel ude Data. Param> :t $(vectorTH[1 :: Int,2,3,4])
$(vectorTH[1 :: Int,2,3,4]) :: (Numt) => FSVec Data. TypeLevel . Num Reps. D4 t

33

