
Sun Microsystems, Inc.
www.sun.com

Development Kit User’s Guide

Java Card™ Platform, Version 3.0.1
Connected Edition

5/21/09

May 2009

Please
Recycle

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Java Card, Java Developer Connection, Mozilla, Netscape, Javadoc, JAR, JDK, JVM, and
NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries, in the U.S. and other countries

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l’adresse suivante: http://www.sun.com/patents et un ou plusieurs brevets supplémentaires ou les applications de brevet en attente aux
États - Unis et dans les autres pays.

Droits du gouvernement des États-Unis - Logiciel Commercial. Les droits des utilisateur du gouvernement des États-Unis sont soumis aux
termes de la licence standard Sun Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Java Card, Java Developer Connection, Mozilla, Netscape, Javadoc, JAR, JDK, JVM, et
NetBeans sont des marques de fabrique ou des marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales, aux États-Unis et dans
d’autres pays.

UNIX est une marque déposée aux États-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matière de
contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des États-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations de des produits ou des services qui sont regi par la
legislation americaine sur le contrôle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites..

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE ÀLA QUALITE MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIERE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xvii

Part I Setup, Samples and Tools

1. Introduction 1

Platform Architecture 2

Development Kit Description 4

Connected Edition Features 4

Connected Edition Security Model 5

Application Models 6

Development Kit Contents 6

Reference Implementation 7

Tools 7

Samples 8

System Requirements 8

Additional Software 8

Java Card TCK 9

2. Installation 11

Prerequisites to Installing the Development Kit 11

Install and Setup the Development Kit 12
iii

▼ Install the Development Kit 12

▼ Setting Up the System Variables 14

Uninstalling the Development Kit 16

3. Developing Java Card 3 Platform Applications 17

Development Steps 17

4. Running the Samples 21

General Procedures for Running Samples 21

▼ Run Samples from the Command Line 22

▼ Accepting an Untrusted Certificate 23

Running Web Application Samples 23

Running the HelloWorld Sample 24

▼ Run HelloWorld 25

Running the ContainerManagedAuthentication Sample 26

▼ Run ContainerManagedAuthentication 26

Running the StaticSecureWebHosting Sample 27

▼ Run StaticSecureWebHosting 28

Running the DynamicSecureWebHosting Sample 29

▼ Run DynamicSecureWebHosting 29

Running the GCFClient Sample 30

▼ Run GCFClient 30

Running the DynamicallyLoadedClasses Sample 31

▼ Run DynamicallyLoadedClasses 32

Running the Persistence Sample 33

▼ Run Persistence 33

Running the RestartableTasks Sample 34

▼ Run RestartableTasks 35

Running the Transactions Sample 36
iv Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

▼ Run Transactions 36

Running the SIOFacility Sample 37

▼ Run SIOFacility 38

Running the EventFacility Sample 39

▼ Run EventFacility 39

Running the CardHolderAuthorization Sample 41

▼ Run CardHolderAuthorization 41

Running Classic Applet Samples 43

ClassicChannels Sample 43

▼ Run the ClassicChannels Sample 44

Running Extended Applet Samples 45

Description of Extended Applet Samples 45

Building the Extended Applet Samples 45

Running the HelloWorld Sample 45

▼ Run the HelloWorld Sample 46

Running the ExtendedChannels Sample 46

▼ Run the ExtendedChannels Sample 47

Running Reference Application samples 47

Description of reference_apps Samples 48

Directories and Files in the reference_apps Directory 48

Building a Transit Sample Application 48

Running the Transit Sample 48

▼ Run the Transit Sample 50

5. Starting the Java Card Runtime Environment 59

Starting cjcre.exe from the Command Line 59

cjcre.exe Command Line Options 60

Java Card Runtime Environment Configuration Files 61

Adding Proprietary Packages 62
Contents v

6. Compiling Source Code 63

Running the Compiler Tool from the Command Line 63

Compiler Tool Options 63

Format 64

Examples 65

7. Creating and Validating Application Modules 67

Packager Operation 67

Options 67

Basic Packaging Sequence 68

Use Cases 68

Signing 69

Use Cases 69

Running the Packager from the Command Line 69

create Subcommand 70

create Subcommand Options 70

create Subcommand Format 72

create Subcommand Examples 72

validate Subcommand 73

validate Subcommand Options 73

validate Subcommand Format 73

validate Subcommand Example 73

copyright Subcommand 74

copyright Subcommand Options 74

copyright Subcommand Format 74

copyright Subcommand Example 74

help Subcommand 74

help Subcommand Options 74

help Subcommand Format 74
vi Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

help Subcommand Example 75

Use Cases 75

8. Loading and Managing Applications 77

Description of the On-Card Installer 77

On-card Installer Operation 78

On-card Installer Functionality 78

Description of the Installer Tool 79

Running the Installer Tool 79

load Subcommand 80

create Subcommand 82

delete Subcommand 84

unload Subcommand 86

list Subcommand 87

help Subcommand 88

Card Installer Use-Case 89

Load an Application 89

Pre-Conditions 89

Post-Conditions 89

Sequence of Events 89

9. Backwards Compatibility for Classic Applets 91

Generating Application Modules From Classic Applets 91

Running the Normalizer 92

normalize Subcommand 93

copyright Subcommand 94

help Subcommand 94

Converting Class Files to CAP Files 94

Specifying an Export Map 96
Contents vii

Loading Export Files 97

Creating a debug.msk Output File 97

Verification of Input and Output Files 98

File and Directory Naming Conventions 98

Input File Naming Conventions 98

Output File Naming Conventions 99

Running the Converter 99

converter Command Options 99

Using a Command Configuration File 101

Using Delimiters with Command Line Options 101

10. Using the APDU Tool 103

Running the APDU Tool From the Command Line 103

Examples of Using the APDU Tool 104

Directing Output to the Console 104

Directing Output to a File 105

Using APDU Script Files 105

11. Debugging Applications 107

Debugger Architecture 107

Using the Debugger 108

▼ Debug a Java Card 3 Platform Application 108

Configuring the Debugger 109

Part II Programming With the Development Kit

12. Configuring the RI 113

Configuring Authenticators 113

Creating Custom Protection Domains 114

Creating a Custom keystore 114
viii Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Configuring SSL Support 115

13. Building the RI From Sources 117

Prerequisites to Building the RI 117

Contents of JC_CONNECTED_HOME\src Folder 118

Running the ROMizer Tool 118

Apps list File Contents 119

Example Contents of Apps List File 120

Romizer Tool Output 120

Building a Custom cjcre.exe 120

Preprocessor Symbols to Customize the VM 122

▼ Build a Custom RI 122

▼ Test the Custom RI 123

14. Programming to the Java Card RMI Client-Side API 125

Remote Stub Object 125

Java Card RMI Client-Side API 126

Package rmiclientlib 127

Package clientlib 127

15. Working with APDU I/O 129

The APDU I/O API 129

APDU I/O Classes and Interfaces 129

Exceptions 130

Two-interface Card Simulation 131

Examples of Use 131

To Connect To a Simulator 132

To Establish a T=0 Connection To a Card 132

javax.comm Package 133

To Establish a Connection To a PC/SC-Compatible Card Reader 133
Contents ix

To Power Up And Power Down the Card 133

To Exchange APDUs 134

To Print the APDU 135

16. Generating SSL Keys and Certificates 137

SSL and HTTPS Certificates and Keys 137

▼ Generating an SSL Certificate 137

A. Application Module and Library Formats 139

Web Application Module Format 140

Extended Applet Application Module Distribution Format 141

Classic Applet Application Module Format 141

Extension Library Format 142

Classic Library Format 143

B. Installed Directories and Files 145

Directories and Files Installed in the src Directory 148

C. Development Kit Tool Commands 151

apdutool.bat Command 151

cjcre.exe Command 153

cjcre.exe Options 153

converter.bat Command 155

converter Command Options 155

debugproxy.bat Command 157

installer.bat Command 157

load Subcommand 158

load Options 158

load Arguments 159

load Subcommand Format 159
x Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

load Subcommand Example 159

create Subcommand 159

create Options 160

create Arguments 160

create Subcommand Format 160

create Subcommand Example 161

delete Subcommand 161

delete Options 161

delete Arguments 161

delete Subcommand Format 161

delete Subcommand Example 162

unload Subcommand 162

unload Options 162

unload Arguments 162

unload Subcommand Format 162

unload Subcommand Example 163

list Subcommand 163

list Options 163

list Arguments 163

list Subcommand Format 163

list Subcommand Example 164

help Subcommand 164

help Subcommand Options 164

help Subcommand Format 164

help Subcommand Example 164

javacardc.bat Command 164

Compiler Tool Options 165

normalizer.bat Command 167
Contents xi

normalize Subcommand and Options 167

normalize Subcommand Format 167

normalize Subcommand Example 168

help Subcommand and Options 168

Summary Help Option 168

normalize Help Option 168

packager.bat Command 168

create Subcommand and Options 169

create Subcommand Format 170

create Subcommand Example 170

validate Subcommand 171

validate Subcommand Format 171

validate Subcommand Example 171

copyright Subcommand 171

copyright Subcommand Format 171

copyright Subcommand Example 171

help Subcommand 171

help Subcommand Format 172

help Subcommand Example 172

romizer.bat Command 172

Examples 173

Glossary 175

Index 185
xii Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Figures

FIGURE 1-1 Architecture of Connected Edition 3

FIGURE 3-1 Java Card 3 Platform Application Development 18

FIGURE 4-1 Browser Language Selection Dialog 49

FIGURE 4-2 Example of French Language Version of the Transit Point of Sale Page 50

FIGURE 4-3 Example of French Language Version of Transit History Page 50

FIGURE 9-1 Process of Generating Application Modules From Classic Applets 92

FIGURE 11-1 Debugger Architecture 107

FIGURE A-1 Web Application Module Format 140

FIGURE A-2 Extended Applet Application Module Format 141

FIGURE A-3 Classic Applet Application Module Format 142

FIGURE A-4 Java Platform Standard Edition Library JAR Format 143

FIGURE A-5 Classic Library Format 144
xiii

xiv Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Tables

TABLE 6-1 Compiler Tool Options 63

TABLE 7-1 Packager Tool Input Files and Expected Output 68

TABLE 7-2 Packager Tool Signing Results 69

TABLE 7-3 create Subcommand Options 70

TABLE 7-4 Use Cases for Command Line Arguments 75

TABLE 8-1 load Options 80

TABLE 8-2 create Options 82

TABLE 8-3 delete Options 85

TABLE 8-4 unload Options 86

TABLE 8-5 list Options 87

TABLE 9-1 normalize Subcommand Options 93

TABLE 9-2 converter Command Options 100

TABLE 10-1 apdutool Command Line Options 104

TABLE 10-2 Supported APDU Script File Commands 106

TABLE B-1 Installed Directories and Files 145

TABLE B-2 Contents of the src Directory 148
xv

xvi Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Preface

This document describes how to use the Java Card 3 Platform, Connected Edition,
development kit to develop applications, servlets, and extended applets. The
Connected Edition architecture uses a new virtual machine and a substantially
different runtime environment from that of the classic platform (an update of the
Java Card technology released in the 2.2.2 release).

Java Card technology for the Connected Edition targets devices that are less resource-
constrained than previous Java Card technology devices. The Connected Edition
includes new network-oriented features, such as support for web applications,
including the Java Servlet APIs, and support for applets with extended and advanced
capabilities.

Note – The Java Card 3 platform development kit is released in both binary and
source bundles. Some bundles include cryptography extensions. Portions of this
document are targeted toward specific release bundles and are identified as such
throughout this book.

You must download the Java Card specifications bundle separately from the Sun
Microsystems web site at:

http://java.sun.com/javacard

Apache Ant (Ant) tasks in the Development Kit are required to install and run the
Development Kit.

Who Should Use This Document
The Development Kit User’s Guide, Java Card Platform, Version 3.0.1, Connected Edition is
written for developers who are:
xvii

http://java.sun.com/javacard
java.sun.com/products/javacard

■ Creating Java Card 3 web or servlet applications, or classic or extended applet
applications for the Connected Edition.

■ Creating a vendor-specific framework based on the specifications for the
Connected Edition.

Before You Read This Document
Before reading this guide, you should become familiar with the Java™ programming
language, object-oriented programming, the specifications for the Connected
Edition, and smart card technology. A good resource for becoming familiar with Java
and Java Card technology is the Java Developer Connection™ web site located at
http://java.sun.com.

How This Book Is Organized
The guide is divided into two parts. The Part I describes how to set up the
development kit, how to use the samples, and how to use the development kit tools.
Part II describes various programming issues for the Java Card 3 platform.

Part I: Setup, Samples and Tools

Chapter 1 provides an overview of the Development Kit for the Connected Edition.

Chapter 2 describes the procedures for installing the tools included in this release.

Chapter 3 provides a brief description of the steps involved in Java Card platform
application development.

Chapter 4 describes the samples included with the Development Kit and provides
the procedures used to run them.

Chapter 5 describes the reference implementation of the Connected Edition and
provides the procedures used to start it.

Chapter 6 describes how to compile source files outside of an IDE by using the
Compiler tool included with the Development Kit.

Chapter 7 describes how to use the Packager tool to create and validate a Java Card
technology-based application module.

Chapter 8 describes how to use the Installer tool to perform card management tasks.
xviii Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

http://java.sun.com

Chapter 9 describes how to use the the tools provided by the Development Kit to
modify classic applets to run on the Java Card 3 platform.

Chapter 10 describes the APDU tool and how it is used when installing and running
applets on a smart card.

Chapter 11 describes how to install and to use the Debugger tool in Java Card 3
platform applications development.

Part II: Programming With the Development Kit

Chapter 12 describes the options used to configure the RI.

Chapter 13 describes how developers can modify or add to source files of the RI
including VM code, and all tools (such as the Packager and Installer) and build a
cutomized Java Card 3 platform RI according to their specific requirements.

Chapter 14 describes how to use the Java Card RMI client-side API.

Chapter 15 describes the APDU I/O API, which is a library used by development kit
components, such as apdutool, and the RMI client framework.

Chapter 16 describes how to generate and install SSL keys.

Appendix A describes the application module and library formats supported by the
Java Card 3 platform card manager.

Appendix B lists and describes the files and directories installed as part of the
bundle.

Appendix C is a reference of command line usage for the Development Kit tools.

Glossary describes key terms used in this document.

Related Documents
References to various documents or products are made in this manual. Have the
following documents available:

■ Application Programming Interface, Java Card Platform, Version 3.0.1,Connected Edition

■ Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition

■ Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected Edition

■ Application Programming Interface, Java Card Platform, Version 3.0.1, Connected Edition

■ Application Programming Notes, Java Card Platform, Version 3.0.1, Connected Edition
Preface xix

■ ISO 7816 Specification Parts 1-6

■ Java Card Platform, Version 3.0, White Paper

■ Java Card Technology for Smart Cards: Architecture and Programmer’s Guide by Zhiqun
Chen (Addison-Wesley, 2000)

■ Java Servlet Specification, Java Card Platform, Version 3.0.1, Connected Edition

■ Off-Card Verifier,Java Card 2.2.2, White Paper

■ Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition

■ The Java Programming Language (Java Series), Fourth Edition by James Gosling, Ken
Arnold, and David Holmes (Addison-Wesley, 2005)

■ The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999)

■ Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected Edition

Specifications, Standards, Protocols and
Technologies
The Connected Edition supports the following specifications, standards, protocols,
and technologies:

■ ETSI SCP and UICC specification for 3G mobile phones.

■ ISO 7816-4:1995 Identification cards - Integrated circuit cards with contacts part 4,
inter-industry commands for interchange.

These specifications describe the communication transport and application
protocol layer between the terminal and the card.

■ ISO 7816-4:2004 Identification cards - Integrated circuit cards with contacts part 4,
inter-industry commands for interchange.

■ EMV 2000 Integrated Circuit Card specifications for payment systems.

These standards enable the correct operation and interoperability of payment
applications on terminals and smart cards.

■ GlobalPlatform card specification

These card specifications are built on top of the Java Card specifications to provide
interoperable content and lifecycle management for multifunction payment cards.

■ PCSC- Personal Computer Smart Card communication

The standard communication interfaces used on personal computers to access
smart card reader driver layers.
xx Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Typographic Conventions

Accessing Documentation Online
The Java Developer Connection™ program web site enables you to access Java
platform technical documentation on the web at

http://java.sun.com/reference/docs

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output
Procedural steps

% su
Password:

1. Run jcre in a new window.

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
Preface xxi

http://java.sun.com/reference/docs

resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can submit your comments about this document to the following
address:

bandol-ri-feedback@sun.com

Please include the following title of this document with your feedback:

Development Kit User’s Guide, Java Card Platform, Version 3.0.1, Connected Edition
xxii Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

PART I Setup, Samples and Tools

This part of the user’s guide describes how to install the development kit, use its
tools and run its samples.

CHAPTER 1

Introduction

The Java Card Platform, Version 3.0.1 consists of two editions, the Classic Edition
and the Connected Edition.

■ The Classic Edition is based on an evolution of the Java Card Platform, Version
2.2.2 and is backward compatible with it, targeting resource-constrained devices
that solely support applet-based applications. Applets that run on the Classic
Edition are referred to as classic applets. The classic applets have the same
capabilities as applets in previous versions of the development kit.

■ The Connected Edition contains a new architecture that enables developers to
integrate smart cards within IP networks and web services architectures. The
Connected Edition supports extended applets and servlets to allow for these new
capabilities. In addition, the Connected Edition also supports classic applets.

This document applies to the Connected Edition. References to components, such as
the Java Card runtime environment (RE), refer to the component as it exists in the
Connected Edition.

The Java Card development kit ships in binary-only bundles or bundles with both
binary and source versions of the kit. In addition, cryptography extensions are
available in some bundles. This document pertains to both binary and source
bundles, except where noted.

This chapter contains the following sections:

■ Platform Architecture

■ Development Kit Description

■ System Requirements

■ Additional Software

■ Java Card TCK
1

Platform Architecture
The Connected Edition contains a new architecture that enables developers to
integrate smart cards within IP networks and web services architectures and features
an enhanced runtime environment and virtual machine, with network-oriented
features that support web applications. The Connected Edition supports both a web
application model and an applet application model. The applet application model
supports two types of applet applications - legacy applets and extended applets.
Extended applets leverage the Connected Edition features while continuing to use
the APDU communication model.

Java Card 3 platform, Connected Edition technology provides high-end smart cards
with improved connectivity and integration into all-IP networks. A high-end, Java
Card 3 technology-enabled smart card can act as a secure network node, capable of
providing security services to the network or requesting access to network resources.
It also allows for the convergence of smart-card services by handling multiple,
concurrent communications through contact interfaces, using IP or ISO 7816-4
protocols, and through contactless interfaces, using the ISO 14443 protocol.

The high-level architecture of the Java Card 3 Platform, Connected Edition is
illustrated in FIGURE 1-1. Notice the classic APIs in a Connected Edition are built on
smart cards that implement a view of the strict, classic Java Card VM, which
supports only classic applet applications. However, the Connected Edition Java Card
VM also supports extended applets and servlets.
2 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

FIGURE 1-1 Architecture of Connected Edition

The development kit ships with a default Java Card RE that simulates a Java Card
Platform, Connected Edition as it would be implemented onto a smart card. The
default Java Card RE is the reference implementation (RI), and is invoked on the
command line with cjcre.exe. The RI implements the ISO 7816-4:2005
specification, including support for up to twenty logical channels, as well as the
extended APDU extensions as defined in ISO 7816-3. For more information on the
RI, see Chapter 8.

The RI was designed to simulate a dual T=1 contacted and T=CL contactless
concurrent interface implementation of the Java Card runtime environment, with the
capability to operate on both interfaces simultaneously. The RI source code can be
built and configured to support all the ISO 7816-3 and ISO 14443-4 smart card
protocols, including T=0 single interface, T=1 single interface, T=CL single
contactless interface and T=1/T=CL dual concurrent interface.

Host Operating System and Device Hardware

Java Card VM

Connected APIs Java Card Classic APIs

Servlet Container Applet Container

Applet Framework APIServlet API

Applet AppWeb App

S
ervlet

S
ervlet

Web App

S
ervlet

S
ervlet

E
xtended
A

pplet

E
xtended
A

pplet

Applet App

E
xtended
A

pplet

Applet AppApplet App

C
lassic

A
pplet

C
lassic

A
pplet

C
lassic

A
pplet

Strict Java Card Classic
VM View
Chapter 1 Introduction 3

Development Kit Description
The Development Kit that enables creation of applications that utilize the Connected
Edition new network-oriented features, such as support for web applications,
including the Java™ Servlet APIs, as well as applets with extended and advanced
capabilities. An application written for or an implementation of the Connected
Edition may use features found in the Classic Edition.

Note – In this release, you will be able to use the Development Kit to create
applications for both Classic and Connected Editions.

The Development Kit bundles include a suite of tools, a reference implementation,
and the associated documentation for developers to use when developing Java Card
technology-based applications (Java Card 3 platform applications), servlets, and
extended applets for the Connected Edition. Developers use the Development Kit to
create applications that fully utilize the features of the Connected Edition.

Connected Edition Features
Developers using the Development Kit to create implementations and applications
for the Connected Edition should be aware of the following features of the
Connected Edition that represent key security and usability characteristics of Java
Card technology-based smart cards and ensure the backward-compatibility and
scalability of the platform:

■ Security for the Java Card 3 platform (Java Card security)

■ Firewall mechanism

■ Secure application update and upgrade

■ Support for transactions, atomicity

■ Card lifecycle-aware runtime environment

■ Persistent memory model

■ Standards alignment

■ ISO 7816 compliance

■ T=0, T=1, T=CL, USB, and MMC protocols support

■ GP, ETSI/3GPP support

■ Binary compatibility for Java Card 3 platform classic products

■ Tools-automated application migration to Connected Edition products
4 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ Legacy applications can be modified to use Connected Edition features

■ Scalability

■ Optional features optimize footprint

■ Unified distribution file format

■ TCK- enforced interoperability

Developers using the Development Kit to create applications for the Connected
Edition should also be aware that the following features are exclusive to the
Connected Edition:

■ KVM-level VM technology

■ 32 bit VM

■ Dynamic .class file loading

■ Concurrent execution of applications

■ On-card and off-card bytecode verification

■ Automatic GC

■ Network-oriented communication

■ Embedded web server

■ Service static and dynamic content through HTTP(s)

■ APDU and non-APDU comm support

■ Generic Communication API

■ Communication over USB, MMC

■ Management of concurrent contact/contactless card access

■ Client mode

■ Connected Edition APIs

■ Support for additional Java language types char and long

■ String support

■ Multi-dimensional arrays

■ Object collections and large data structures

■ Generic event framework

■ Application code and data sharing enhancements

Connected Edition Security Model
The Connected Edition security model includes the following components and
features:

■ Class file verification
Chapter 1 Introduction 5

■ Code isolation

■ Context isolation (firewall)

■ Policy-based access control

■ Enhanced shareable interface mechanism

■ Transport-level (SSL/TLS) web application security

■ Web application client and card holder authentication

■ Per-application declarative security

■ Key and trust management

Application Models
The Connected Edition provides support for web applications, extended applets and
legacy applet-based applications.

Web Applications

The Connected Edition provides support for typical web applications including
servlets, filters, and listeners. The web application model is only available on
implementations for the Connected Edition.

Extended Applets and Legacy Applet-Based Applications

For developers, the extended applet application model of the Connected Edition
provides a migration path for legacy applet-based applications to the Connected
Edition.

Development Kit Contents
The Development Kit is delivered in executable Java archive (JAR) files or bundles.
Each bundle includes the binaries of a Java Card virtual machine, APDU tool,
Compiler tool, Converter tool, Debugger tool, Installer tool, Normalizer tool,
Packager tool, ROMizer tool, and sample applications for the Development Kit. In
addition to the binaries, the source bundles also include the source files used to
build the binaries.
6 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Reference Implementation
The Connected Edition reference implementation is located in the bin directory with
a program name of cjcre.exe. See Chapter 5 for detailed information about
running the reference implementation from the command line.

Development KitDevelopment KitTools
Chapter 3 describes the sequence of development activities and the tool chain used
in developing Java Card 3 applications.

The Development Kit bundle contains the following tools:

■ Compiler Tool- Compiles Java Card 3 platform application source files.

See Chapter 6 for information about using the Compiler tool.

■ Packager Tool - Packages application modules and libraries into a deployable
application group.

See Chapter 7 for information about using the Packager tool.

■ Installer Tool - Interacts with the on-card card manager to install applications
and applets.

See Chapter 8 for information about using the Installer tool as a stand-alone
application.

■ APDU Tool - When loading an applet, reads a script file containing Application
Protocol Data Unit (APDU) commands and sends them to the C Java Card
Runtime Environment where each APDU command is processed and returned to
apdutool, which displays both the command and response APDU commands on
the console as a stand-alone application.

See Chapter 10 for information about using the APDU tool.

■ Normalizer Tool - Generates application modules for a Java Card 3 platform
smart card from a converted applet format.

See Chapter 9 for information about using the Normalizer tool.

■ Converter Tool - Converts Java class files into a format that can be loaded onto
and run on a Java Card 3 platform smart card.

See Chapter 9 for information about using the Converter tool.

■ Debugger Tool - Used during development of Java Card 3 platform applications
to suspend the VM, step over source code, and inspect variables.

See Chapter 11 for information about using the Debugger tool.

■ ROMizer Tool - Creates a ROM image to use in building a custom cjcre.exe.

See Chapter 13 for detailed information about creating a ROM image file and
building a custom cjcre.exe.
Chapter 1 Introduction 7

Samples
The Development Kit bundle contains various samples to give an overview of Java
Card 3 platform applications. These samples are organized to provide sample
applications that demonstrate the features of the Connected Edition and sample
source code that developers can use in creating custom applications. See Chapter 4
for a description of the contents of the samples directories and a description of how
to run them.

System Requirements
This release of the Development Kit executes on the Microsoft Windows XP SP2
operating system with an IDE of the developer’s choice.

Additional Software
The following additional software is required by the Development Kit. See Chapter 2
for download and installation information.

■ Apache ANT - Apache Ant 1.6.5 or higher is required to run the samples from
command line or to build the cjcre.exe from source code.

■ Firefox browser - The trusted agent for running the RI.

■ Internet Explorer 7 browser - Used as a remote client and not the trusted agent.

■ GCC compiler - If you are using the source bundle, the Minimal GNU for
Windows (MinGW) version 5.1.3 is required to build the cjcre.exe or tools
from source code. If you are using a binary bundle, MinGW is not required.

Note – MinGW is not required to run or to develop applications.

■ Java Development Kit - The commercial version of Java Development Kit
(JDK™) version 6 update 10 or higher (JDK version 1.6) is required.

■ NetBeans IDE (optional) - The NetBeans IDE 6.7 and the can be used to develop
applications.
8 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Java Card TCK
The Java Card Technology Compatibility Kit (Java Card TCK) is a portable,
configurable automated test suite for verifying the compliance of your
implementation with the Java Card specification. To be in compliance, an
implementation of the Java Card 3 platform, Connected Edition specification must
pass the Java Card TCK 3.0.1 tests as described in Java Card Technology Compatibility
Kit, Version 3.0.1 User’s Guide.
Chapter 1 Introduction 9

10 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 2

Installation

This chapter describes the prerequisites you need to install on your system before
you use the development kit, how to install the development kit, how to set system
variables, and how to uninstall the development kit. You can run both a Classic and
Connected development kit simultaneously.

Binary and source code development kits are available for the Microsoft Windows
XP SP2 operating system. Source code bundles allow you to change the development
kit’s reference implementation, whereas the binary bundles allow you only to use
the reference implementation.

Each development kit is provided in an executable JAR file bundle. See Chapter 1 for
a description of this development kit bundle and Appendix B for a list of all the files
installed by this development kit.

Note – The Java Card specifications are not included in the Development Kit
bundle. The specifications must be downloaded separately.

Prerequisites to Installing the
Development Kit
The following software must be installed before installing the Development Kit:

■ Apache ANT - download and install Apache Ant version 1.6.5 or higher from
http://ant.apache.org.

■ Firefox browser - download the Firefox browser from
http://www.mozilla.com.
11

http://ant.apache.org
http://www.mozilla.com

■ GCC compiler - download and install MinGW from
http://sourceforge.net/projects/mingw and install it according to the
instructions on the http://www.mingw.org web site.

■ Java Development Kit - download the JDK software from
http://java.sun.com/javase/downloads and install it according to the
instructions on the web site.

■ NetBeans IDE (optional) - download NetBeans IDE 6.7 from
http://www.netbeans.org/downloads and install it according to the
instructions on the web site.

Install and Setup the Development Kit
This section describes how to install and set up the development kit.

▼ Install the Development Kit
1. Verify that the additional software required by the Development Kit is

installed on the development system.

See “Prerequisites to Installing the Development Kit” on page 11 for the
download location and installation instructions of the required additional
software.

2. Download an appropriate Development Kit JAR file to a directory of your
choice.

3. Launch the Development Kit installer.

The Development Kit can be launched automatically when you download the JAR
file or by using the Windows file manager tool to navigate to the directory
containing the Development Kit JAR file and double clicking the file name or
icon.

The Development Kit can also be launched by opening a Command Prompt
window, navigating to the directory containing the Development Kit JAR file, and
executing the following command from the command line:

java -jar Bundle-Filename

In the command, Bundle-Filename is the name of the downloaded Development
Kit JAR file.

The installation wizard displays the following screen.
12 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

http://www.mingw.org
http://sourceforge.net/projects/mingw
http://java.sun.com/javase/downloads
http://www.netbeans.org/downloads

4. Complete each action requested by the installer.

By default, the Development Kit for the Connected Edition is installed in:

C:\JCDK3.0.1_ConnectedEdition

If you specify a different installation directory, the names of the installation
directory and its parent must not contain a space.

For example, the installation directory cannot be located in C:\program files
because of the space in the program files directory name.

Note – The installation directory (either the default directory or the alternate
installation directory you specify) is referred to as JC_CONNECTED_HOME.

5. Click the Finish button to complete installation.

The bundle installs files and directories containing the binary files and source
code described in Appendix B. The files and directories are installed under the
root installation directory, either C:\JCDK3.0.1_ConnectedEdition or the
directory you specified during installation. The root installation directory is
referred to as JC_CONNECTED_HOME in this document.
Chapter 2 Installation 13

▼ Setting Up the System Variables
1. Set the JAVA_HOME system variable to the JDK root directory.

Before running the Development Kit, you must set the JAVA_HOME environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set JAVA_HOME, go to Windows Control Panel > System >
Advanced > Environment Variables dialog and either create or edit a System
variable named JAVA_HOME with the literal value of the JDK root directory on
your system. For example, in the System variables box enter the following:

■ To temporarily set JAVA_HOME, enter the following command in a Command
Prompt window:

set PATH=C:\java_home_path;%PATH%

For example, if the Java platform software is stored in the c:\jdk6 directory,
enter:

set PATH=C:\jdk6;%PATH%

Note – If using the Category view, choose Windows Control Panel > Performance
and Maintenance > System > Advanced to open the Environment Variables panel.

2. Set the ANT_HOME system variable to the Ant root directory.

Before running the Development Kit, you must set the ANT_HOME environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set ANT_HOME, go to Windows Control Panel > System >
Advanced > Environment Variables dialog and either create or edit a System
variable named ANT_HOME so that its value is the Apache Ant folder. For
example, in the System variables box enter the following:

■ To temporarily set ANT_HOME, enter the following command in a Command
Prompt window:

set PATH=C:\ANT_HOME;%PATH%

For example if the Ant was installed in C:\ant\apache-ant1.6.5, enter:

set PATH=C:\ant\apache-ant1.6.5;%PATH%

Variable Value
JAVA_HOME C:\JAVA\jdk1.6.0_10

Variable Value
ANT_HOME C:\ant\apache-ant-1.6.5
14 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

3. Set the JC_CONNECTED_HOME system variable to the development kit root
directory.

Before running the development kit, you must set the JC_CONNECTED_HOME
environment variable permanently in the Windows Control Panel or temporarily
from the command line:

Note – Some of the command line tools as well as running samples from the
command line require that the JC_CONNECTED_HOME variable is set correctly.

■ To permanently set JC_CONNECTED_HOME , go to Windows Control Panel >
System > Advanced > Environment Variables dialog and either create or edit a
system variable named JC_CONNECTED_HOME variable so that its value is
either C:\JCDK3.0.1_ConnectedEdition or the directory you specified
during installation. For example, in the System variables box enter the
following:

■ To temporarily set JC_CONNECTED_HOME, enter the following command in a
Command Prompt window:

set PATH=C:\JC_CONNECTED_HOME;%PATH%

For example if you installed in C:\JCDK3.0.1_ConnectedEdition, enter:

set PATH=C:\JCDK3.0.1_ConnectedEdition\bin;%PATH%

4. Add %JAVA_HOME%\bin, %JC_CONNECTED_HOME%, and %ANT_HOME%\bin to
the Path variable displayed in the Environment Variables panel.

5. Add MinGW to the Path variable.

MinGW is not required if only the Development Kit binary bundle is installed. If
the Development Kit source bundle is installed, set the MinGW environment
variable permanently in the Windows Control Panel or temporarily from the
command line:

■ To permanently set the MinGW path, edit the Path variable in the System
variables box to include the location of MinGW\bin:

;C:\MinGW\bin;

■ To temporarily set the MinGW path, enter the following command in a
Command Prompt window:

set PATH=C:\MinGW_path;%PATH%

For example, if MinGW is installed in the C:\mingw directory, enter:

set PATH=C:\mingw\bin;%PATH%

Variable Value
JC_CONNECTED_HOME C:\JCDK3.0.1_ConnectedEdition
Chapter 2 Installation 15

Note – If you choose to set the JAVA_HOME variable and MinGW PATH each time
you run the Development Kit, place the appropriate JAVA_HOME variable and
MinGW PATH commands in a batch file.

Uninstalling the Development Kit
To uninstall the Development Kit, delete the JC_CONNECTED_HOME directory and
all of its contents.
16 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 3

Developing Java Card 3 Platform
Applications

This chapter provides a brief description of the activities and Development Kit tools
involved in developing applications for the Java Card 3 platform. If you are enabling
classic applets to run on Connected Edition and Classic Edition cards, see Chapter 9.

Development Steps
The steps described in FIGURE 3-1 illustrate the sequence of activities completed by
a developer when creating an application for the Java Card 3 platform. See the
Application Programming Notes, Java Card Platform, Version 3.0.1, Connected Edition
for additional, advanced information not provided in this guide about creating
applications for the Java Card 3 platform.
17

FIGURE 3-1 Java Card 3 Platform Application Development

1. Source files - Write the source code and create the descriptor files.

The Development Kit also provides sample application source code that
developers can use in creating custom applications. See Chapter 4 for a
description of the samples provided in the Development Kit.

2. Compile/build - Compile the source code.

See Chapter 6 for a description of using the Java Card 3 platform Compiler tool
(javacardc.bat) as a stand-alone application.

3. Packager - Package the compiled source code.

See Chapter 7 for a description of using the Packager tool to create and validate
application modules.

4. Off-Card Installer - Load the application and create instances on the card by
using the Installer tool.

See Chapter 8 for a description of using the Off-Card Installer (Installer) tool and
the associated on-card installer used to load an application module onto the card,
create an instance of an application, delete (deactivate) an instance of an
application, remove a module or application from the card, and display
information about loaded applications and instances.

Other
Resources

Ready to
Deploy
Module

Java
Source
Files

Compile /
Build

Browser / Client

Off-Card Installer

Packager

Card Load

Create

Delete

Unload
18 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

5. Browser/Client - Access the application on the card by using a client (browser or
APDU tool).

See Chapter 10 for description of using the APDU tool to display command and
response APDU commands on the console.
Chapter 3 Developing Java Card 3 Platform Applications 19

20 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 4

Running the Samples

The samples directory under JC_CONNECTED_HOME contains various samples
that demonstrate the features of the Java Card API, Connected Edition. The samples
include simple web applications, extended applet applications, classic applet
applications, and reference applications. Reference applications are blue print-like
applications that demonstrate the interactions between various applications on the
card using advanced features such as SIO and events.

This chapter describes the procedures for running the samples and contains the
following sections:

■ General Procedures for Running Samples

■ Running Web Application Samples

■ Running Classic Applet Samples

■ Running Extended Applet Samples

■ Running Reference Application samples

General Procedures for Running
Samples
This section contains the following general procedures that developers can use to
run a sample from the command line.
21

▼ Run Samples from the Command Line
Each sample has a build.xml at the root level of sample folder. This build.xml
can be run from command line using the ant tool. To run any sample from
command line perform the following steps:

1. Open a command window.

2. Make sure ant can be run from command line.

See Chapter 2 for information about installing and running ant.

3. Verify JC_CONNECTED_HOME is set to the Development Kit home.

Note – JC_CONNECTED_HOME represents the directory in which the Development
Kit was installed.

If JC_CONNECTED_HOME is not set permanently by using the Windows Control
Panel (see Chapter 2), you can temporarily set JC_CONNECTED_HOME by
entering the following command:

set JC_CONNECTED_HOME=c:\path

4. Go to the appropriate sample folder.

This example uses the HelloWorld sample.

5. Enter the ant run command.

The following figure illustrates the command window used to run the HelloWorld
sample.

The ant run command starts cjcre.exe in a new command window, loads the
built application, and, if used, opens the browser to access the application.

When running, most sample applications open a browser and display a web page
that serves as the primary user interface. Follow the instructions for each sample
(explained in later sections) to interact with the application.
22 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

▼ Accepting an Untrusted Certificate
When running a sample that uses HTTPS to establish a secure connection with a web
server, the Firefox browser might report that the sample uses an untrusted certificate
and not allow you to accept the certificate required to open the web page. If
cjcre.exe is still running, you can use the browser Certificate Manager to add an
exception for the server certificate by performing the following procedure.

1. In the browser menu bar select the Tools > Options menu items.

2. In the Options dialog box, select the Advanced icon in the tool bar and click
the View Certificates button to open the Certificate Manager.

3. Select the Servers tab and click the Add Exception button.

4. In the Add Security Exception dialog box, enter the URL of the local host that is
displayed in the web browser.

For example, https://localhost:50245

5. Click the Get Certificate button and accept the certificate loaded by the
Certificate Manager.

In some cases, you may need to restart the browser for the certificate to be
accepted.

Running Web Application Samples
The following sections describe the individual web application samples contained in
the samples\web folder and provide specific procedures used to run them. The
following list of samples is ordered based on their complexity with the simplest
HelloWorld sample listed first and the more complex
CardHolderAuthorization sample listed last:

■ HelloWorld - Demonstrates the base structure of a Java Card 3 platform
application that developers can use to develop, deploy, create, execute, delete,
and unload a stand-alone module. It is a minimal application utilizing the
simplest source code and meta-files. See “Running the HelloWorld Sample” on
page 24.

■ ContainerManagedAuthentication - Demonstrates basic web container
authentication with a PIN authenticator using JC-FORM with Biometric
password. See “Running the ContainerManagedAuthentication Sample” on
page 26.

■ StaticSecureWebHosting - Demonstrates secure hosting on a static port. See
“Running the StaticSecureWebHosting Sample” on page 27.
Chapter 4 Running the Samples 23

■ DynamicSecureWebHosting - Demonstrates secure hosting on a dynamic port.
See “Running the DynamicSecureWebHosting Sample” on page 29.

■ GCFClient -Demonstrates the Generic Connection Framework (GCF)
functionality of a http client, a socket client, and a socket server. See “Running the
GCFClient Sample” on page 30.

■ DynamicallyLoadedClasses - Demonstrates dynamic class loading using the
Class.forName() method. See “Running the DynamicallyLoadedClasses
Sample” on page 31.

■ Persistence - Demonstrates the persistence of user entered information when a
session on a card is resumed. See “Running the Persistence Sample” on
page 33.

■ RestartableTasks - Demonstrates how a registered task can be automatically
available after the card is reset. See “Running the RestartableTasks Sample”
on page 34.

■ Transactions - Demonstrates transaction types and functions. See “Running
the Transactions Sample” on page 36.

■ SIOFacility - Demonstrates isCLientInRole() usage and usage of the
transferable API. See “Running the SIOFacility Sample” on page 37.

■ EventFacility - Demonstrates a servlet that registers a listener for events and a
servlet that enables users to fire custom events. See “Running the
EventFacility Sample” on page 39.

■ CardHolderAuthorization - Demonstrates a remote client unable to access a
resource and a card holder authorizing a second servlet to enable access by the
remote client. See “Running the CardHolderAuthorization Sample” on
page 41.

Note – See Programming Notes, Java Card 3 Platform, Connected Edition for
information about writing web applications that run on the Java Card 3 platform.

Running the HelloWorld Sample
This application demonstrates the basic structure of a Java Card 3 platform
application that developers can use to develop, deploy, create, execute, delete, and
unload a stand-alone module. It is a minimal application utilizing the simplest
source code and meta-files. Refer to the Runtime Environment Specification, Java Card
Platform, Version 3.0.1, Connected Edition for details.

This sample contains one web applications that demonstrates using a basic web
form to collect and display information provided by the user. The project is located
in the JC_CONNECTED_HOME\samples\web folder and is named HelloWorld.
24 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the sample consists of using the command-line interface to start the
HelloWorld application, entering a name in the web page, clicking the Say Hello
button on the page, and then displaying a greeting.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run HelloWorld

1. Start the HelloWorld application.

a. Go to the HelloWorld folder.

b. Enter the ant run command.

When running, a browser displays the following page:

2. Enter a name in the Enter Name field and click the Say Hello button.

The browser displays a greeting similar to the following illustration.
Chapter 4 Running the Samples 25

Running the
ContainerManagedAuthentication Sample
This sample demonstrates basic web container authentication with a PIN
authenticator using JC-FORM with a Biometric password. Refer to the Runtime
Environment Specification, Java Card Platform, Version 3.0.1, Connected Edition for
details.

This sample contains a web application that demonstrates running a servlet that
requires user authentication to access a web page. The project is located under the
JC_CONNECTED_HOME\samples\web folder and is named
ContainerManagedAuthentication.

Running the sample consists of using the command-line interface to start the
ContainerManagedAuthentication application and login to the page by
entering the name admin and password 1234.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run ContainerManagedAuthentication

1. Start the ContainerManagedAuthentication application.

a. Go to the ContainerManagedAuthentication folder.

b. Enter the ant run command.

When running, a browser opens that displays the following dialog:

2. Click the AuthServlet hyperlink.

The browser displays the login page.
26 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

3. Enter the following values in the login dialog:

Login: admin

Password: 1234

■ If the login is incorrect, the browser displays the following error page:

■ If the login is correct, the browser displays the following protected page:

Running the StaticSecureWebHosting Sample
This sample demonstrates secure hosting with user access on a static port. The
sample contains one web application that accesses a secure website hosted on a
static port defined by the sample’s manifest.mf file. Each time the application is
run, access to the web site is made through this port. Refer to the Runtime
Environment Specification, Java Card Platform, Version 3.0.1, Connected Edition for
details. The project is located under the JC_CONNECTED_HOME\samples\web
folder and is named StaticSecureWebHosting.
Chapter 4 Running the Samples 27

Running the sample consists of using the command-line interface to start the
StaticSecureWebHosting application, check the website’s security certificate,
and display the web page.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run StaticSecureWebHosting

1. Start the StaticSecureWebHosting application.

a. Go to the StaticSecureWebHosting folder.

b. Enter the ant run command.

Note – If the browser displays a warning that the security certificate is not issued by
a trusted certificate authority, disregard it and choose to continue to the web site.
The security certificate for this sample is used for demonstration purposes only and
cannot be used for developing deployable samples.If you are unable to continue to
the web page, perform the procedure described in “Accepting an Untrusted
Certificate” on page 23.

The browser displays the Secure hosting static port entry page.

2. Enter a name in the Name field and click the Say Hello button.

The browser displays the static port web page.
28 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the DynamicSecureWebHosting
Sample
This sample demonstrates secure hosting with user access on a dynamic port. The
sample contains one web application that accesses a secure website hosted on a
dynamic port determined by the Java Card 3 platform. Each time the application is
run, the Java Card 3 platform determines the port used to access the website. Refer
to the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for details. The project is located under the JC_CONNECTED_HOME\
samples\web folder and is named DynamicSecureWebHosting.

Running the sample consists of using the command-line interface to start the
DynamicSecureWebHosting application, check the website’s security certificate,
and display the web page.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run DynamicSecureWebHosting

1. Start the DynamicSecureWebHosting application.

a. Go to the DynamicSecureWebHosting folder.

b. Enter the ant run command.

Note – If the browser displays a warning that the security certificate is not issued by
a trusted certificate authority, disregard it and choose to continue to the web site.
The security certificate for this sample is used for demonstration purposes only and
cannot be used for developing deployable samples. If you are unable to continue to
the web page, perform the procedure described in “Accepting an Untrusted
Certificate” on page 23.

The browser displays the Secure hosting dynamic port entry page.
Chapter 4 Running the Samples 29

2. Enter text in the name field and click the Say Hello button.

The browser displays a greeting page that uses the text entered in the name field.

Running the GCFClient Sample
The GCF application demonstrates the Generic Connection Framework (GCF)
functionality. Refer to the Runtime Environment Specification, Java Card Platform,
Version 3.0.1, Connected Edition for details.

Running the sample consists of using the command-line interface to start the
GCFClient application, entering a URL (such as http://www.sun.com) in the
URL field, and then clicking the Get Content button on the page to display the
contents of the web page.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run GCFClient

1. Start the GCFClient application.

a. Go to the GCFClient folder.

b. Enter the ant run command.

When running, a browser opens and displays the GCF Client Page.
30 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

http://www.sun.com

2. Enter a URL in the URL field and click the Get Content button.

The application establishes an http connection with the website and displays
content from the web site in the browser.

Note – The sample works correctly only when a URL field contains a URL in a full
form (such as http://www.sun.com). The sample does not work when the URL is
provided in an abbreviated form (such as www.sun.com).

Running the DynamicallyLoadedClasses
Sample
This sample demonstrates dynamic class loading using the Class.forName()
method. The sample contains one web application that displays a web form enabling
the user to enter a text string and to select a greeting type from a dropdown list. The
application displays a text string that concatenates the greeting type with the text
string entered by the user. Refer to the Runtime Environment Specification, Java Card
Chapter 4 Running the Samples 31

http://www.sun.com

Platform, Version 3.0.1, Connected Edition for details. The project is located under the
JC_CONNECTED_HOME\samples\web folder and is named
DynamicallyLoadedClasses.

Running the sample consists of using the command-line interface to start the
DynamicallyLoadedClasses application, entering text in the web page Name
field, and clicking the Greet button to display the greeting page.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run DynamicallyLoadedClasses

1. Start the DynamicallyLoadedClasses application.

a. Go to the DynamicallyLoadedClasses folder.

b. Enter the ant run command.

When running, a browser opens and displays the Dynamically Loaded Classes
page.

2. Enter a name in the name field, select a greeting, and click the Greet button.

The browser displays text that consists of the greeting type and the name entered
in the name field.
32 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the Persistence Sample
This sample demonstrates the persistence of user entered information when a
session on a card is resumed. The sample stores user-entered information as history
and, when the card resumes functioning, the previous entries are made available.
Refer to the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition for details.

Running the sample consists of using the command-line interface to start the
Persistence application, clicking the hyperlink on the Persistence web page to
open the database form, using the form to add and delete items in the database list,
and stopping and restarting the server. When the server is stopped and restarted the
items in the list should not change.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run Persistence

1. Start the Persistence application.

a. Go to the Persistence folder.

b. Enter the ant run command.

When running, a browser opens that displays the Persistence page.

2. Click the Database hyperlink.

The browser displays the database entry form.

3. Enter text in the Item field and click the Add button.

The browser displays the added text in the Items in Database list. The following
figure illustrates an entry form with two items added to the list.
Chapter 4 Running the Samples 33

4. Delete an item from the list.

a. Type the name of the item into the Item text field.

b. Click the Delete button.

The item is removed from the Items in Database list.

5. Stop and resume the server.

a. In the cjcre.exe. window, kill the server by using ctrl + C.

b. Open a new Command Prompt window and navigate to the
JC_CONNECTED_HOME\bin directory.

c. Restart the server from the new window by using, cjcre.exe -resume.

6. Verify that the content in the database list is unchanged.

7. Add a new item to the list to verify that the database is still functional.

Running the RestartableTasks Sample
This sample demonstrates how a registered task can be automatically available after
the card is reset. The sample registers a task that serves data via an HTTP connection
to the client. Refer to the Runtime Environment Specification, Java Card Platform, Version
3.0.1, Connected Edition for details.

This sample contains two web applications that demonstrate a registered task that is
available after the card is reset. The projects are located under the
JC_CONNECTED_HOME\samples\web\RestartableTasks folder. One project
is named InfoClient and the other project is named InfoServer.
34 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the RestartableTasks sample consists of using the command-line
interface to start the InfoClient application and the InfoServer application, and
clicking the Register Ping Service hyperlink to display the JCPingServer page. The
server is stopped and restarted and the JCPingServer page.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run RestartableTasks

1. Start the InfoServer application.

a. Go to the InfoServer folder.

b. Enter the ant run command.

When running, a browser opens and displays the Restartable Tasks page.

2. Click the Register Info Service link in the web page to start the JCInfoServer
and display the server page.

3. Start the InfoClient application.

Each time the InfoClient application runs, the hit number is incremented in the
output and a different text message is displayed.

4. Stop and resume the server.

a. In the cjcre.exe. window, kill the server by using ctrl + C.

b. Open a new Command Prompt window and navigate to the
JC_CONNECTED_HOME\bin directory.
Chapter 4 Running the Samples 35

c. Restart the server from the new window by using, cjcre.exe -resume.

5. Run the InfoClient application.

The hit number in the output text continues to increment from the previous value.

Running the Transactions Sample
The Transactions sample application contains a module that performs updates
and either commits the transaction gracefully or aborts by throwing exception
within code to simulate rollback. Refer to the Runtime Environment Specification, Java
Card Platform, Version 3.0.1, Connected Edition for details.

This sample contains a web application that demonstrates the event mechanism. The
Transactions project is located under the JC_CONNECTED_HOME\samples\
web folder.

Running the Transactions sample consists of using the command-line interface to
start the Transactions application, entering data in the Transactions web page and
clicking the Set Value button on the page to commit the transaction.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run Transactions

1. Start the Transactions application.

a. Go to the Transactions folder.

b. Enter the ant run command.

When running, a browser opens and displays the Transactions page.

2. Enter a set of characters in the New Value field and mark the Crash? checkbox.

The browser displays a page containing the contents of the value field. The page
is similar to the following.
36 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

3. Click the Set Value button.

The browser displays a page containing an exception message with the contents
of the value field. The page is similar to the following.

4. In the Transactions page, enter a set of characters in the Value field, do not
mark the Crash? checkbox, and click the Set Value button.

The browser displays the Transactions page with the Current Value updated to
the new value.

Running the SIOFacility Sample
This sample demonstrates inter-application communication using shared interface
objects (SIOs). One servlet updates a shared object while the other can read updated
values. Refer to the Runtime Environment Specification, Java Card Platform, Version
3.0.1, Connected Edition for details.

This sample contains two web applications that demonstrate inter-application
communication using SIOs. The projects are located under the
JC_CONNECTED_HOME\samples\web\SIOFacility folder. One project is
named SIOservice and the other project is named SIOclient.
Chapter 4 Running the Samples 37

Running the SIOFacility sample consists of using the command-line interface to
start both the SIOservice application and the SIOclient application, entering
values in the SIO Service web page, clicking the Set Value button on the page, and
then using a hyperlink on the SIO page to display a list of received events.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run SIOFacility

1. Start the SIOService application.

a. Go to the SIOService folder.

b. Enter the ant run command.

When running, a browser opens that displays the SIO Service page.

2. Enter a value in the New Value field and click the Set Value button.

The browser displays a page with the new value set.

3. Use the command line to start the SIOClient application.

When running, a browser opens that displays the SIO Client page.

4. Click the link in the servlet page to display the SIO value.

The value displayed on the page is the same as that set in the SIO Service page.
38 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the EventFacility Sample
This sample demonstrates an Event facility containing two servlets, in which the
first servlet registers a listener for events fired by another application. Refer to the
Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected Edition
for details.

This sample contains two web applications that demonstrate the event mechanism.
The projects are located under the JC_CONNECTED_HOME\samples\web\
EventFacility folder. One project is named EventSender and the other project is
named EventListener.

Running the EventFacility sample consists of using the command-line interface
to start both the EventListener application and the EventSender application,
entering data in the Event Sender web page, clicking the Fire Event button on the
page, and then using a hyperlink on the Event Listener page to display a list of
received events.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run EventFacility

1. Start the EventListener application.

a. Go to the EventListener folder.

b. Enter the ant run command.

When the sample is running, a browser opens and displays the following web
page containing a hyperlink to the List of Received Events.
Chapter 4 Running the Samples 39

2. Start the EventSender application.

Depending on the browser settings, the application opens a new browser window
or a new tab and displays the following Event Sender form:

3. Enter some text in the Data field and click the Fire event button.

The browser displays a page with the new text.

4. In the Event Facility Listener page, click the List of Received Events hyperlink.

The application displays the following list of events fired by the custom event
servlet:
40 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the CardHolderAuthorization
Sample
This sample demonstrates how the authentication of a card holder to a locally
accessible servlet grants a non-card holder access to a remotely accessible servlet.
Card-holder-user authentication is tracked globally (card-wide). Authorization to
access resources is protected by globally authenticated card-holder-user identity.
Authorization to access resources can be granted by the card holder to other users.
Refer to the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition for details.

In this sample, servlets (CardHolderApp and RemoteUserApp) run on a local
desktop that is networked with a remote desktop. After CardHolderApp is
deployed and instantiated on the local desktop, the remote user attempts but fails to
access RemoteUserApp on the local desktop.

After the login attempt fails, the card holder uses the CardHolderApp on the local
desktop to authenticate and enable the remote user to access the RemoteUserApp
on the local desktop.

In this sample, the URL for the RemoteUserApp is
http://IP Address:8020/RemoteUserApp and the URL for the CardHolderApp is
http://localhost:8020/CardHolderApp.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run CardHolderAuthorization

1. Start the CardHolderApp application.

a. Go to the CardHolderApp folder.

b. Enter the ant run command.

The browser displays the Card Holder App page.
Chapter 4 Running the Samples 41

2. Start the RemoteUserApp application.

a. Go to the RemoteUserApp folder.

b. Enter the ant run command.

The browser displays the Remote User’s App page.

3. From a remote workstation or PC networked with the platform running the
sample, open a browser and enter the following URL:

URL: http://IP Address:8019/remoteuserapp

This action is performed as a remote user who is attempting to access the Remote
User’s App page. The attempt fails and the browser displays an HTTP error 403
page in the browser stating that card holder authorization is required.

4. In the Card Holder App page, click the Authorize Remote User hyper link and
enter the following login and password:

Login: admin

Password: 1234

This action is performed as the card holder. The sample displays the authorization
page in the browser.

5. From the remote workstation or PC, either refresh the browser page displayed
in step 2 or enter the URL from Step 3 in a new browser page.

The sample displays the Remote User page in the browser.
42 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

6. In the Card Holder App page, click the Remote User’s Servlet hyper link and
enter the following login and password:

Login: boss

Password: 5678

7. This action is performed as the remote user. The sample displays a Welcome
Remote User page in the browser.

Running Classic Applet Samples
The following section describes the classic applet sample contained in the samples\
classic_applets folder and provides the procedure used to run it.

ClassicChannels Sample
The ClassicChannels sample demonstrates the behavior of Java Card technology-
based logical channels by showing how two applets that interact with each other can
each be selected for use at the same time.
Chapter 4 Running the Samples 43

The applets may use a contact or contactless interface for communication with the
terminal. The ClassicChannels sample demonstrates the selection of an applet on
both interfaces. The sample also demonstrates use of ExtendedLength APDU.

The ClassicChannels sample mimics the behavior of a wireless device connected
to a network service. A connection manager tracks whether the device is connected
to the service and whether the connection is local or remote.

While it is connected, the user’s account is debited on a unit of time basis. The debit
rate is based on whether the connection is local or remote, and uses either the
contacted or contactless interface.

The sample employs two applets to simulate the behavior of logical channels:

■ The ConnectionManager applet manages the connection.

■ AccountAccessor applet manages the account.

When the user turns on the device, the ConnectionManager applet is selected. The
ConnectionManager implements the ExtendedLength interface to handle APDUs
with larger data segments such as the ones used for key exchange in the sample.
Every unit of time the terminal sends a message containing the area code to the card.

When the user wants to use the service, the AccountAccessor applet is selected on
another logical channel so that the terminal can query the balance. The
AccountAccessor can return the balance only if the ConnectionManager is
active. The ConnectionManager applet sets the connection and tracks the
connection status. Based on the value of an area code variable, the
ConnectionManager determines whether the connection is local or remote. It also
determines whether the connection is contacted or contactless. AccountAccessor
uses this information to debit the account at the appropriate rate. The connection is
disabled when the user completes the call or when the account is depleted.

▼ Run the ClassicChannels Sample
1. Start the ClassicChannels application.

a. Go to the ClassicChannels folder.

b. Enter the ant run command.

The ant script either generates the default output file, default.out or the
output file name specified in the command line. To specify the name of the
output file use the following command:

ant -Dredirect.output=outputfile_name run

In this command, outputfile_name represents the name of the output file. This
command redirects the output from the APDUtool execution to the
outputfile_name file.
44 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

2. Verify that the contents of the output file created by the ant run command are
the same as the contents of the ClassicChannels.expected.out file.

Running Extended Applet Samples
This release includes two extended applet samples in
samples/extended_applets that illustrates the use of the Java Card API,
scenarios of package masking, and post-manufacture installation.

This section consists of the following sections:

■ Description of Extended Applet Samples

■ Building the Extended Applet Samples

■ Running the HelloWorld Sample

■ Running the ExtendedChannels Sample

Description of Extended Applet Samples
Version 3.0.1 of the Development Kit includes the HelloWorld extended applet
sample.

Building the Extended Applet Samples
Ant script files are provided to build the samples, demonstration masks, and cjcre.

See Programming Notes, Java Card 3 Platform, Connected Edition for additonal
information about creating extended applets.

Running the HelloWorld Sample
This sample demonstrates the basic structure of a Java Card 3 platform extended
applet that developers can use to develop, deploy, create, execute, delete, and
unload extended applets. It is a minimal extended applet utilizing the simplest
source code and meta-files. Refer to the Runtime Environment Specification, Java Card
Platform, Version 3.0.1, Connected Edition for details.
Chapter 4 Running the Samples 45

This sample contains one project that demonstrates the function of an extended
applet. The project is located in the JC_CONNECTED_HOME\samples\
extended_applets folder and is named HelloWorld.

Running the sample consists of using the command-line interface to start the
HelloWorld extended applet. When running, the project installs the extended
applet, processes an incoming APDU, and responds with a text greeting.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run the HelloWorld Sample
1. Start the HelloWorld application.

a. Go to the HelloWorld folder.

b. Enter the ant run command.

The ant script either generates the default output file, default.out or the
output file name specified in the command line. To specify the name of the
output file use the following command:

ant -Dredirect.output=outputfile_name run

In this command, outputfile_name represents the name of the output file. This
command redirects the output from the APDUtool execution to the
outputfile_name file.

2. Verify that the contents of the output file created by the ant run command are
the same as the contents of the HelloWorld.expected.out file.

Running the ExtendedChannels Sample
This sample demonstrates the basic structure of a Java Card 3 platform extended
applet that developers can use to develop, deploy, create, execute, delete, and
unload extended applets. It is a minimal extended applet utilizing the simplest
source code and meta-files. Refer to the Runtime Environment Specification, Java Card
Platform, Version 3.0.1, Connected Edition for details.

This sample contains one project that demonstrates the function of an extended
applet. The project is located in the JC_CONNECTED_HOME\samples\
extended_applets folder and is named ExtendedChannels.
46 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Running the sample consists of using the command-line interface to start the
ExtendedChannels extended applet. When running, the project installs the
extended applet, processes an incoming APDU, and responds with a text greeting.

Note – Using the command line to start a sample is described in “Run Samples from
the Command Line” on page 22.

▼ Run the ExtendedChannels Sample
1. Start the ExtendedChannels application.

a. Go to the ExtendedChannels folder.

b. Enter the ant run command.

The ant script either generates the default output file, default.out or the
output file name specified in the command line. To specify the name of the
output file use the following command:

ant -Dredirect.output=outputfile_name run

In this command, outputfile_name represents the name of the output file. This
command redirects the output from the APDUtool execution to the
outputfile_name file.

2. Verify that the contents of the output file created by the ant run command are
the same as the contents of the ExtendedChannels.expected.out file.

Running Reference Application samples
This release includes a sample reference application in samples/reference_apps
that illustrate the use of the Java Card API, scenarios of package masking, and post-
manufacture installation.

This section consists of the following sections:

■ Description of reference_apps Samples

■ Building a Transit Sample Application

■ Running the Transit Sample
Chapter 4 Running the Samples 47

Description of reference_apps Samples
Version 3.0.1 of the Development Kit includes the Transit reference application
sample.

Directories and Files in the reference_apps Directory
The reference_apps directory is located at JC_CONNECTED_HOME\samples.
It contains the Transit sample directory, which consists of the
AdminWeb,ClassicWalletApplet, POSWeb, TransitExtLib,
TurnstileApplet, TurnstileClient, TurnstileWeb, WalletAssistApplet,
and WalletClassicLib source directories and files used to build and run the
projects and applications that form the Transit sample.

Building a Transit Sample Application
The each application in the Transit sample contains a build.xml at its root level
folder. Developers can use build.xml with the ant tool to build a sample
application without running it.

To build a sample application without running it, use the Command Prompt
window to navigate to the appropriate application directory and enter the ant
command. For example, to build the ClassicWalletApplet sample application
without running it, navigate to the ClassicWalletApplet folder and enter the
following command:

ant

The ant tool runs the tools (compiler and Packager) required to build the sample
application. It displays a build status message at completion of the task.

See Programming Notes, Java Card 3 Platform, Connected Edition for detailed
information about the Transit sample.

Running the Transit Sample
The Transit sample is run by building and running individual Transit sample
applications in the following sequence:

■ WalletClassicLib

■ TransitExtLib

■ ClassicWalletApplet
48 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ WalletAssistApplet

■ POSWeb

■ AdminWeb

■ TurnstileApplet

■ TurnstileClient

■ TurnstileWeb

A RunTransit.bat file is provided in the Transit directory that automatically
builds and runs the Transit sample applications in their proper sequence. When
running the sample with the RunTransit.bat file, use the following procedures
for performing the actions that are web-page based.

See “General Procedures for Running Samples” on page 21 for a description of the
steps performed in running a sample.

Note – The POSWeb application has been internationalized and can be localized for
the French language. FIGURE 4-1 illustrates the language setting screen in Firefox.
FIGURE 4-2 and FIGURE 4-3 are examples of two POSWeb sample screens as they
appear when localized for the French language.

FIGURE 4-1 Browser Language Selection Dialog
Chapter 4 Running the Samples 49

FIGURE 4-2 Example of French Language Version of the Transit Point of Sale Page

FIGURE 4-3 Example of French Language Version of Transit History Page

▼ Run the Transit Sample

Note – See “General Procedures for Running Samples” on page 21 for a general
description of the steps performed in running a sample.

1. Run the WalletClassicLib sample application.

a. Go to the WalletClassicLib folder.

b. Enter the ant run command.

Verify that a second terminal window opens, cjcre.exe starts, and the the first
window displays, Build Successful.
50 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Note – Do not close the cjcre.exe window.

2. Run the TransitExtLib sample application.

a. Go to the TransitExtLib folder.

b. Enter the ant run command.

Verify that a second terminal window opens, cjcre.exe starts, and the the first
window displays, Build Successful.

Note – Do not close the cjcre.exe window.

3. Run the ClassicWalletApplet sample application.

a. Go to the ClassicWalletApplet folder.

b. Enter the ant run command.

Verify that the applet was successfully created. The SELECT APDU command
returns success status word 90 00. Additional APDU commands are used to credit
the Wallet additional $100 (0x64). Verify that these commands return success
status words 90 00.

4. Run the WalletAssistApplet sample application.

a. Go to the WalletAssistApplet folder.

b. Enter the ant run command.

Verify that the applet was successfully created. The SELECT APDU command
returns Status word 69 99.

5. Run the POSWeb sample application.

a. Go to the POSWeb folder.

b. Enter the ant run command.

The browser opens and displays the following page:
Chapter 4 Running the Samples 51

c. Click the Continue button and in the login screen, enter the User Name and
PIN as:

■ owner-pos

■ 8888

Note – If the browser displays a warning that the security certificate is not issued by
a trusted certificate authority, disregard it and choose to continue to the web site.
The security certificate for this sample is used for demonstration purposes only and
cannot be used for developing deployable samples.If you are unable to continue to
the web page, perform the procedure described in “Accepting an Untrusted
Certificate” on page 23.

The browser displays the transaction page.
52 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

d. Click the CREDIT button.

The browser displays the Credit Request page.

e. Enter a number in the field and click the SUBMIT button.

The page displays the credited amount, in this example 100.
Chapter 4 Running the Samples 53

f. Click the AUTHORIZE button.

This authorizes access to the Admin application from a non-trusted client (the
Internet Explorer browser in this RI). Clicking the CANCEL button (when
enabled) cancels remote authorization.

6. Run the AdminWeb sample application.

a. Go to the AdminWeb folder.

b. Enter the ant run command.

The Administration login page is displayed.

Note – If the browser displays a warning that the security certificate is not issued by
a trusted certificate authority, disregard it and choose to continue to the web site.
The security certificate for this sample is used for demonstration purposes only and
cannot be used for developing deployable samples.If you are unable to continue to
the web page, perform the procedure described in “Accepting an Untrusted
Certificate” on page 23.

c. In the login screen, enter the login User Name and PIN as:
54 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ remote-admin

■ 8888

d. Click the Login button.

The browser displays the Administration page.

7. Run the TurnstileApplet sample application.

a. Go to the TurnstileApplet folder.

b. Enter the ant run command.

The log window displays a 90 00 in select response.

c. Return to the AdminWeb page and click the UNBLOCK button.

8. Clean and build the TurnstileClient.

a. Go to the TurnstileClient folder.

b. Enter the ant command (builds without running TurnstileClient).

9. Run the Turnstile Client by executing the run_tranist_client.bat file in
the Transit/TurnstileClient directory.

10. Run the TurnstileApplet sample application.

The Output window displays 90 00 completes and SUCCESSFULL.
Chapter 4 Running the Samples 55

11. In the Transit Point of Sale Main Page, click the REFRESH BALANCE button.

The balance displays 2 less - 98.

12. Run the TurnstileWeb sample application.

a. Go to the TurnstileWeb folder.

b. Enter the ant run command.

The browser opens and displays the Transit Turnstile Home Page.

c. Click the Continue button.

The browser displays the Entry page.

d. Return to the Transit Administration Main Page and click the UNBLOCK
button.

e. Select Zone 1 and click the ENTER button.

The browser displays the Transit Turnstile Exit page.
56 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

f. Click the Exit button.

g. Click the HISTORY button on the Transit Point of Sale Main Page.
Chapter 4 Running the Samples 57

58 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 5

Starting the Java Card Runtime
Environment

The Connected Edition reference implementation is written in the Java and C
programming languages and is called the C Java Card Runtime Environment (Java
Card runtime environment). It is a simulator that can be built with a pre-built ROM
mask, much as a Java Card technology-based implementation. It has the ability to
simulate persistent memory (EEPROM) as well as to save and restore the contents of
EEPROM to and from disk files. The Java Card runtime environment performs I/O
via a socket interface, simulating the interaction with a card reader or host machine
implementing HTTP(S) communication with the card reader or host machine.

The Java Card runtime environment is supplied by the Development Kit as the pre-
built executable, cjcre.exe. The executable, cjcre.exe, is run from the command
line.

This chapter includes the following sections:

■ Starting cjcre.exe from the Command Line

■ Java Card Runtime Environment Configuration Files

■ Adding Proprietary Packages

Starting cjcre.exe from the Command
Line
The Java Card runtime environment can be run from the command line by using the
following command and options:

JC_CONNECTED_HOME\bin\cjcre.exe [options]
59

cjcre.exe Command Line Options
The following command line options are listed in order of their expected frequency
of use (most frequently used to less frequently used):

■ -version - Displays version information.

■ -help [copyright] - Prints help and copyright messages.

■ -resume - Restores the VM state from the previously saved EEPROM image and
continues VM execution.

When -resume is specified, other options such as -ramsize and -e2psize
are ignored and the corresponding values are obtained from the EEPROM image.

■ -e2pfile filename - Supplies the file name in which the EEPROM image is
stored.

■ -ramsize size - Configures the amount of RAM used.

The range of values that the Java Card runtime environment can accept from the
command line is 64K to 32M. The default value used is 1M. The value required to
run the samples is between 128K and 32M.

size is set as a value in bytes (2345), kilobytes (32K), or megabytes (4M).

■ -e2psize size - Configures the amount of EEPROM used.

The range of values that the Java Card runtime environment can accept from the
command line is 1M to 32M. The default value used is 4M. The value required to
run the samples is between 2M and 32M.

size is set as a value in bytes (2345), kilobytes (32K), or megabytes (4M). The
specified size is rounded up to a multiple of 4. For example, a size specified at
253, is rounded up to 256.

■ -corsize size - Sets the Clear On Reset (COR) memory size in which a portion of
RAM is dedicated to COR memory.

The range of values that the Java Card runtime environment can accept from the
command line is 2K to 8K. The default value is 4K.

size is set as a value in bytes (2345) or kilobytes (2K).

■ -httpport portnumber - Sets the HTTP port number on which cjcre will be
listening for http requests.

The default value for -httpport is 8019.

■ -contactedport portnumber - Sets the port used to simulate the contacted
interface for APDU.

The default value for -contactedport is 9025.

■ -contactedprotocol protocol - Sets the APDU protocol on this port, either T=0
or T=1.

The default value for -contactedprotocol is T=1.
60 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ -contactlessport port-number - Sets the port used to simulate the contactless
interface.

The default value for -contactlessport is 9026. The protocol (T=CL) cannot be
changed.

■ -debugger - Runs cjcre in debug mode.

■ -debugport portnumber - Sets the debug port where the Debug proxy
communicates.

The default value for -debugport is 7019.

■ -nosuspend - Valid when -debugger is specified. Does not suspend the threads
at cjcre startup.

■ -enableassertions - Enables Java code assertions (the assert keyword in Java
code).

■ -loggerlevel <none|fatal|error|warn|info|verbose|debug|all> -
Sets the type of log messages output.

All log messages up to the specified level are displayed.

■ -config config file - Sets a new configuration file.

The default is lib/config.properties.

■ -Xname=value - Sets a single configuration property such as
-Xmyproperty=myvalue.

■ -Dname=value - Supplies a system property (such as -Dmyproperty=myvalue).

System properties set in this manner can be retrieved using the API’s
System.getProperty("myproperty") method. A maximum of 50 -D
properties can be passed in the command line.

Java Card Runtime Environment
Configuration Files
If you installed the Development Kit source bundle, the configuration files for the
Java Card runtime environment (config.properties and system.config) files
are located in the lib folder. These configuration files contain internal configuration
information that must not be changed unless specified. Java Card runtime
environment execution requires properly configured config.properties and
system.config files. Incorrect changes to these files will prevent execution of the
Java Card runtime environment. See Chapter 12 for details on configuring the Java
Card runtime environment.
Chapter 5 Starting the Java Card Runtime Environment 61

If you installed the Development Kit binary bundle, you cannot change the
configuration files for the Java Card runtime environment.

Adding Proprietary Packages
If you installed the Development Kit source bundle, you can add proprietary
packages to the ROM mask for the Java Card runtime environment by building a
custom cjcre.exe. See Chapter 13 for additional information and procedures.

If you installed the Development Kit binary bundle, you cannot add proprietary
packages.
62 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 6

Compiling Source Code

This chapter describes the use of the Java Card 3 platform Compiler tool
(javacardc.bat) in compiling the source code of applications outside of an IDE.

See Chapter 3 to better understand the role and relationship between the Compiler
tool and the other Development Kit tools used in developing applications for the
Java Card 3 platform.

Running the Compiler Tool from the
Command Line
The Compiler tool provides a wrapper for javac (the JDK compiler) and includes
an annotation processor for the Java Card 3 platform to check for unsupported
language features, such as the use of float and double.

Compiler Tool Options
In addition to Java Card 3 platform specific options, all standard javac options for
JDK 1.6 can be used:

TABLE 6-1 Compiler Tool Options

Option Description

-g Generate all debugging info

-g:none Generate no debugging info

-g:{lines,vars,source} Generate only some debugging info
63

Format
The following is an example of the Compiler tool command format:

-nowarn Generate no warnings

-verbose Output messages about what the compiler is doing

-deprecation Output source locations where deprecated APIs are used

-classpath path Specify where to find user class files and annotation
processors

-cp path Specify where to find user class files and annotation
processors.

-sourcepath path Specify where to find input source files.

-bootclasspath path Override location of bootstrap class files.

-extdirs dirs Override location of installed extensions.

-endorseddirs dirs Override location of endorsed standards path.

-proc:{none,only} Control whether annotation processing and/or
compilation is done.

-processor
class1[,class2,class3...]

Names of the annotation processors to run; bypasses
default discovery process.

-processorpath path Specify where to find annotation processors.

-d directory Specify where to place generated class files.

-s directory Specify where to place generated source files.

-implicit:{none,class} Specify whether or not to generate class files for implicitly
referenced files.

-encoding encoding Specify character encoding used by source files.

-source release Provide source compatibility with specified release.

-target release Generate class files for specific VM version.

-version Version information.

-help Print a synopsis of standard options.

-Akey[=value] Options to pass to annotation processors.

-X Print a synopsis of nonstandard options.

-Jflag Pass flag directly to the runtime system.

TABLE 6-1 Compiler Tool Options (Continued)

Option Description
64 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

javacardc.bat [options] [sourcefiles] [@list_files]

In the format example:

■ options - standard javac options,

■ sourcefiles - .java files to be compiled

■ @list_files - plain text file containing a list of all java files that need to be compiled

Examples
A .java file named UsesFloat.java contains the following source:

public class UsesFloat {

 float f = 0;

}

It uses float, which is not supported by the Java Card 3 platform. Compiling this
file with standard javac generates a class file without any errors. However,
javacardc.bat fails the compilation with an error such as the following:

C:\JCDK3.0.1_ConnectedEdition\bin>javacardc.bat UsesFloat.java

Java Card 3.0.1 Compiler

UsesFloat.java:2: float keyword used

 float f = 0;

 ^

1 error

The bold text in the example output indicates the error message text.
Chapter 6 Compiling Source Code 65

66 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 7

Creating and Validating Application
Modules

This chapter describes creating and validating a Java Card technology-based
application module with the Packager tool (Packager). See Chapter 3 to better
understand the role and relationship between the Packager and the other
Development Kit tools used in developing applications for the Java Card 3 platform.

This chapter contains the following sections:

■ Packager Operation

■ Running the Packager from the Command Line

Packager Operation
When creating an application module, the Packager takes a specified folder
containing the files for the application module, validates the input files and creates
the application module archive file. If a web application contains JAR files in the lib
directory, the Packager creates a corresponding library module in the application
module.

Each application module can have a descriptor as a part of the MANIFEST.MF file
that specifies application module declarative items. In cases where an application
module has a descriptor, the descriptor information must be validated and
preserved.

Options
The following are options of the Packager:
67

■ Modules can be passed to the Packager as paths to directories containing the
corresponding structure.

■ Manifest files with information contained in an input module folder are preserved
without change.

Basic Packaging Sequence
The Packager creates an application module JAR file from input by performing the
following actions:

1. Input files are extracted into a temp folder under a folder named either with the
input file name or a name specified as a command line parameter.

2. Application module file types are checked and the application module type is
determined.

3. A type entry is added to the application module.

4. The application module is placed under the temp folder.

If an optional keystore file is specified in the command line parameter, verified
information from it is added to the resulting application module.

5. The entire contents are grouped together to create the final application module
JAR file.

Use Cases
TABLE 7-1 provides a description of the possible Packager input files and
corresponding output conditions.

TABLE 7-1 Packager Tool Input Files and Expected Output

Input Expected Output

A valid JAR file A valid application module JAR file

A malformated JAR file Packager warns the user and exits

Files of the same type A valid application module JAR file

Files of different types Packager warns the user and exits

Files of the same type but the type
contradicts the passed --type argument

Packager warns the user and exits
68 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Signing
The Packager can invoke the appropriate tools automatically to sign the application
module JAR file. See “create Subcommand” on page 70. For information about
creating a custom keystore that can be used to sign the application module JAR file,
see Chapter 12.External signing tools can also be used to sign the modules if the user
knows about those tools.

The Packager assumes that the keystore has everything needed in it and simply
invokes the jarsigner to sign the module.

Use Cases
TABLE 7-2 provides a description of the possible Packager signing input and
corresponding output conditions

Running the Packager from the
Command Line
The command line interface for the Packager has the following syntax:

packager.bat subcommand [options] module-or-folder

The following is a list of the available subcommands for the Packager:

■ create Subcommand

■ validate Subcommand

■ copyright Subcommand

■ help Subcommand

TABLE 7-2 Packager Tool Signing Results

Input Expected Output

Valid keystore passed Application module JAR file is signed
successfully

Invalid keystore passed or invalid keystore
username or password

Packager warns the user and exits
Chapter 7 Creating and Validating Application Modules 69

create Subcommand
Creates the application module or library from a given module or folder.

create Subcommand Options
TABLE 7-3 identifies the create subcommand options and provides their
descriptions.

TABLE 7-3 create Subcommand Options

Options Description

-A alias
or
--alias alias

Application signing attribute, where alias is the
name used to retrieve the key from the
keystore.

-c

or
--compress

Optional. If specified, the tool compresses the
output application module file with DEFLATE
algorithm. Otherwise creates an uncompressed
application module file.

-e path-of-export-files
or

--exportpath path-of-export-files

Specifies the export files path. System’s
api_export files are implicitely loaded.

-f

or
--force

Optional. If specified, descriptors or application
module assembly problems are automatically
corrected when possible. See “--force Option
Behavior” on page 71.

-K keystore-file
or
--keystore keystore-file

Required only when the -–sign option is
specified. Application signing attribute, where
keystore-file is the path and filename where the
private keys are stored. A key utility (such as
the JDK keytool) must be used to create and
maintain this file. See Chapter 12, “Creating a
Custom keystore” on page 114.

-n

or

--nowarn

Suppresses the warning messages.

-o file-name
or
--out file-name

Specifies the output application module file
where file-name is the name of the output file.

-P key-password
or
--passkey key-password

Application signing attribute, where key-
password is the password for the private key.
70 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

--force Option Behavior

The –-force option affects the following aspects of the Packager’s behavior:

■ If the manifest file is missed in a passed application module, the Packager warns
the user and tries to gather required information and other available information
(such as mandatory attributes defined in the specification, names of passed
modules, and web application private libraries).

■ If the runtime descriptor of a passed application module(s) and/or an external
runtime descriptor contains unsupported information for determined module
type, this information is removed (with appropriate warnings).

■ If mandatory information is missed in runtime descriptor files, the Packager tries
to add it (with appropriate warnings).

■ If specified destination directory does not exists, the Packager creates it.

■ If the specified output JAR file exists, the Packager overwrites it.

Note – Check the result runtime descriptor created by the Packager in force mode.
Though the Packager attempts to automatically correct descriptors, the result is not
guaranteed. Developers should use this option carefully.

-p package-AID-for-classic-lib
or

--packageaid package-AID-for-classic-lib

Specifies the package AID in
//AID/<RID>/<PIX> format for classic-
lib. Ignored if type is not classic-lib.

-s

or
--sign

Optional. Specifies that the Packager sign the
application.
If --sign is specified, --keystore keystore-file,
--storepass keystore-password, --passkey key-
password, and --alias alias are required.

-S keystore-password
or
--storepass keystore-password

Application signing attribute, where keystore-
password is the password for the keystore.

-t file-type
or
--type file-type

Specifies the application module file type,
where file-type can be web, extended-
applet, classic-applet, classic-lib,
or extension-lib. The default value is web.

TABLE 7-3 create Subcommand Options (Continued)

Options Description
Chapter 7 Creating and Validating Application Modules 71

create Subcommand Format
The following is an example of the create subcommand format:

packager.bat create --out file-name [--type file-type] \
[--exportpath path-of-export-files] \
[--packageaid package-AID-for-classic-lib] \
[--sign --storepass keystore-password --passkey key-password \
--alias alias] [--compress] [--force] [--nowarn]\

module- file-or-folder

create Subcommand Examples
Two examples are provided, an example of the output option and an example of the
signing option.

Output Option Example

The following is an example of the create subcommand with the output option:

packager.bat create -o mymodule.jar -t web -c c:\mymodulefolder

In this command line example, the Packager performs the following tasks:

1. Extracts the contents of mymodulefolder directory to a temporary folder under
the subdirectory mymodulefolder.

2. Creates corresponding Web Application Module object and performs validation
and canonicalization of all xml descriptors.

3. Creates a META-INF/MANIFEST.MF file with required information (such as
application name).

4. Compresses the contents of the temporary folder to c:\temp\mymodule.jar.

Signing Option Example

The following is an example of the create subcommand with the output option:

packager.bat create -o mymodule.jar -t web --sign \
--keystore c:\mykeystore\c.keystore --storepass demo \
--keypass mykey --alias jckey -c c:\mymodulefolder

in addition to those tasks described in the previous example, the Packager in this
command line example signs the application using the keystore from c:\
mykeystore\c.keystore by performing the following:
72 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ Provides the password (demo) for the mykeystore keystore.

■ Provides the password (mykey) for the private c.keystore key.

■ Provides the name (jckey) required to retrieve the key from the keystore.

validate Subcommand

Validates an application module.

validate Subcommand Options
The validate subcommand has a single option, -t or --type, used to specify the
type of application module or group to be validated. The type can be web,
extended-applet,classic-applet, classic-lib, or extension-lib.

validate Subcommand Format
The following is an example of the validate subcommand format where type can
be web, extended-applet, or classic-applet:

packager.bat validate [--type type] module-file-name (or module-directory-name)

validate Subcommand Example
The following is an example of the validate subcommand:

packager.bat validate -t web myapp.war

In this command line example, the Packager performs the following tasks:

1. Extracts the contents of myapp.war application module to a temporary folder.

2. Validates the contents of the descriptors.

3. Validates that the classes specified in the descriptors actually exist in the
application module.

4. Cross validates the descriptors.

5. Displays results of validation.
Chapter 7 Creating and Validating Application Modules 73

copyright Subcommand

Displays the detailed copyright notice.

copyright Subcommand Options
There are no options for the copyright subcommand.

copyright Subcommand Format
The following is an example of the copyright subcommand format:

packager.bat copyright

copyright Subcommand Example
The following is an example of the copyright subcommand:

packager.bat copyright

help Subcommand

Prints information about using subcommands.

help Subcommand Options
While there are no options for the help subcommand, it does accept a topic attribute
consisting of a specific subcommand name for which detailed information is
displayed.

help Subcommand Format
The following is an example of the help subcommand format:

packager.bat help subcommand
74 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

help Subcommand Example
The following is an example of the help subcommand:

packager.bat help validate

Use Cases
TABLE 7-4 provides use cases for the command line arguments and describes the
expected output for each.

TABLE 7-4 Use Cases for Command Line Arguments

Input Expected Output

Valid arguments are passed for all specified types
(web, extended-applet,
classic-applet,extension-lib, or
classic-lib), -o specified.

Valid application module of
corresponding type is created.

Valid arguments are passed for all specified types
(web, extended-applet,
classic-applet,extension-lib, or
classic-lib), -o not specified.

Packager performs xml validation. No
application module is created.

The same name is specified for several
application modules using the filename argument.

Error message and modules are renamed
automatically.

-f is specified, descriptors contain unsupported
tags.

Warns developer, cuts out unsupported
tags.

-s is specified, valid signing related arguments
passed.

Signs the resulting JAR file.
Chapter 7 Creating and Validating Application Modules 75

76 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 8

Loading and Managing
Applications

This chapter describes the use of the card installer in loading, creating, unloading,
and deleting applications on a card. The card installer consists of two components,
an on-card installer and an off-card Installer tool (Installer tool) provided by the
Development Kit, that work in conjunction to provide card application management
functions.

See Chapter 3 to better understand the role and relationship between the Installer
tool and the other Development Kit tools used in developing and deploying
applications for the Java Card 3 platform.

This chapter consists of the following sections:

■ Description of the On-Card Installer

■ Description of the Installer Tool

■ Card Installer Use-Case

Description of the On-Card Installer
The on-card installer is a ROMized servlet responsible for handling requests
received from the off-card installer, extracting the command and data, forwarding
them to the card manager. Upon the return of the card manager, the installer forms
the response to send back to the off-card installer.
77

On-card Installer Operation
The on-card installer provides the interface between the Installer tool and the card
manager and provides a request handling function for the card manager to perform
card management tasks. The on-card installer assumes the /cardmanager context
to represent the on-card card manager. All /cardmanager/command URIs (in which
command represents load, create, delete, unload, or list) are mapped to one context
/cardmanager assigned to the on-card installer.

The on-card installer parses and extracts the command, name, and data information
in the multi-part POST requests. The information is passed on by calling the
appropriate card manager’s API. The on-card installer and the filter are registered
and started with the web container at card initialization.

On-card Installer Functionality
The on-card installer provides the following functionality:

1. Handles requests received from the off-card installer.

These requests include the command for card application management and the
data (application module JAR file).

2. Extracts data (JAR file) contained in the HTTP request and saves it to an on-card
file.

3. Passes the load, create, delete, unload, or list command, parameters and
the location of the saved JAR file to the Card Manager.

4. Handles the return from the Card Manager.

5. Builds the response content and sending the response back to the off-card
installer.

6. Can be configured to require PIN authentication of the off-card installer via basic
HTTP authentication:

■ load, create, delete, or unload are protected with session-scoped
authentication.

■ list is protected with global card holder authentication.

■ load, create, delete, or unload require card holder authorization.
78 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Description of the Installer Tool
The Installer tool works on behalf of the on-card installer to perform various card
management tasks such as deploying an application and listing all applications. The
communication between the Installer tool and on-card installer is proprietary. For
the RI, HTTP POST is used as the communication protocol.

The following is the list of functionalities required by the Installer tool:

■ Loads an application module onto the card.

■ Creates an instance of an application.

■ Deletes (deactivates) an instance of an application.

■ Completely removes a module or application from the card.

■ Displays information about loaded applications and instances.

Running the Installer Tool
The Installer tool is a command-line tool, implemented using Java SE. The command
line interface for the Installer tool has the following syntax:

installer.bat subcommand [options] [arguments]

In the command line, the subcommand must be the first argument after the
installer.bat command. Options and arguments can be in any order.

In the command line, subcommands and options can be specified in either a short
form or a long form. The short form is a single character preceded by a hyphen (-).
The long form uses a meaningful name preceded by two hyphens (--). Each
subcommand can take one or more options or arguments that must follow the
subcommand but can be in any order. For example, -i instance-name or
--instance instance-name.

Arguments are command line arguments that are not bound to an option. For
example, an application or module file name used in the load command is an
argument.

The following is a list of the available subcommands for the installer.bat
command:

■ load Subcommand

■ create Subcommand

■ delete Subcommand

■ unload Subcommand
Chapter 8 Loading and Managing Applications 79

■ list Subcommand

■ help Subcommand

load Subcommand
Causes the Installer tool to load a specified application module or library file. The
load subcommand can have one or more options and arguments.

load Subcommand Options

TABLE 8-1 lists and describes the available load subcommand options.

TABLE 8-1 load Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card installer
where oncardinstaller-url represents the
complete URL of the on-card installer.

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or library
on the card, where module-or-library-name
represents the module or library name.

-p password
or
--password password

Optional. Used when authentication is
required. Specifies the password for the user
set by the --user or -u subcommand,
where password represents the required user
password.
80 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

load Subcommand Arguments

Command line arguments available for the load subcommand are the module or
application group file name.

load Subcommand Format

The following is an example of the load subcommand format:

installer.bat load -c oncardinstaller-url -s signature-file -t file-type \
-n module-or-library-name [-u user-id -p password] \
application-module (or library-file)

load Subcommand Example

In the following example, the Installer loads the file Calculator.war with the
name calc.

-s signature-file
or
--signature signature-file

Specifies the name of the properties file that
contains the BASE64 encoded certificate and
signature, where signature-file represents the
file name.
This file is a simple properties file with
properties:
signature=base64-encoded-signature
certificate=certificate-to-validate-the
module-and-digest

-t file-type
or
--type file-type

Specifies the type of file being loaded, where
file-type represents one of the following
values:
• web

• classic-applet

• extended-applet

• classic-lib

• extension-lib

-u user-id
or
--user user-id

Optional. Used when authentication is
required to access the card manager.
Specifies the user name, where user-id
represents the user name.

TABLE 8-1 load Options

Option Description
Chapter 8 Loading and Managing Applications 81

installer.bat load -c http://localhost:8019/cardmanager \

-s mysig.properties -n calc -t web Calculator.war

create Subcommand
Causes the Installer to create an instance of an application from a specified group
with a specified context. The create subcommand can have one or more options
but has no arguments.

create Subcommand Options

TABLE 8-2 lists and describes the available create subcommand options.

TABLE 8-2 create Options

Option Description

-a applet-name-or-id
(or)
--applet applet-name-or-id

Specifies the name of the applet loaded
by load command, where applet-name-
or-id represents the applet name.

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-d install-parameters
or
--data install-parameters

Optional. Install parameters (printable
hex string) that will be passed to the
install method of a classic or extended
applet.

-i name
or
--instance name

Specifies the name or ID of the
instance, where name represents the
name or ID. For web applications, a
context name used to create the web
application. If none is specified, then
the default Web-Context-Path from
JCRD is used.
82 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

create Subcommand Arguments

There are no command line arguments for the create subcommand.

create Subcommand Format

The following is an example of the create subcommand format:

installer.bat create -c oncardinstaller-url -n module-or-library-name \
[-a applet-name-or-id] [-d install-parameters] [-i name] \
[-u user-id -p password]

create Command Example 1

The following example assumes that a module was previously loaded and named
calc. See “load Subcommand Example” on page 81. The Web-Context-Path in RD
is /Calculator.

This example of the create command registers the web application with a web
container using /Calculator as the context. Users access this web application by
using http://cardip:cardport/Calculator.

installer.bat create -c http://localhost:8019/cardmanager -n calc

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or
library loaded by load command,
where module-or-library-name
represents the module or library name.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.

TABLE 8-2 create Options (Continued)

Option Description
Chapter 8 Loading and Managing Applications 83

create Command Example 2

Similar to Command Example 1, the following example assumes that a module was
previously loaded and named calc, with the exception that instead of using the
default /Calculator, the application is registered with a web-container using the
context /Mycalc.

installer.bat create -c http://localhost:8019/cardmanager -n calc \

-i /MyCalc

create Command Example 3

Similar to Command Example 2, the following example assumes that a module was
previously loaded and named calc, with the exception that the application is
registered as an applet instead of a web-container and has an instance ID of /01.

installer.bat create -c http://localhost:8019/cardmanager -n calc \

-a //aid/A000000062/03010C0201 -d a000f0 -i /01

delete Subcommand
Causes the installer to delete an instance that was created by the create
subcommand. The delete subcommand can have one or more options but no
arguments.
84 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

delete Subcommand Options

TABLE 8-3 lists and describes the available delete subcommand options.

delete Subcommand Arguments

There are no command line arguments for the delete subcommand.

delete Subcommand Format

The following is an example of the delete subcommand format:

installer.bat delete -c oncardinstaller-url -i name [-u user-id -p password]

delete Command Example

In the following example, the installer deletes the instance /MyCalc.

installer.bat delete -c http://localhost:8019/cardmanager -i /MyCalc

TABLE 8-3 delete Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-i name
or
--instance name
or
-i name;name1;name2; ...
or
--instance name;name1;name2; ...

Specifies the instance of the
application or multiple instances of
applications to be deleted, where name
represents the instance name of the
application.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.
Chapter 8 Loading and Managing Applications 85

unload Subcommand
Causes the installer to unload (remove) the specified module or application from the
card including all instances created by the create command. The delete
subcommand can have one or more options but no arguments.

unload Subcommand Options

TABLE 8-4 lists and describes the available unload subcommand options.

unload Subcommand Arguments

There are no command line arguments for the unload subcommand.

unload Subcommand Format

The following is an example of the unload subcommand format:

installer.bat unload -c oncardinstaller-url -n module-or-library-name [-f] \
[-u user-id -p password]

TABLE 8-4 unload Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-n module-or-library-name
or
--name module-or-library-name

Specifies the name of the module or
library loaded by load command,
where module-name represents the
module or library name.

-f

or
--force

Optional. Forces an attempt to delete
any instances before unloading.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.
86 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

unload Command Example

In the following example, the installer completely removes the calc module and all
of its instances.

installer.bat unload -c http://localhost:8019/cardmanager -n calc

list Subcommand
Causes the installer to display summary or detailed information about loaded
application modules, instances, and libraries.

list Subcommand Options

TABLE 8-5 lists and describes the available list subcommand options.

list Subcommand Arguments

There are no command line arguments for the list subcommand.

list Subcommand Format

The following is an example of the list subcommand format:

TABLE 8-5 list Options

Option Description

-c oncardinstaller-url
or
--cardmanager oncardinstaller-url

Specifies the location of the on-card
installer, where oncardinstaller-url
represents the complete URL.

-d

or
--detailed

Optional. Displays complete details of
the application-modules, instances,
and libraries.

-p password
or
--password password

Optional. Used when authentication is
required. Sets the password for the
user specified by the --user or -u
subcommand.

-u user-id
or
--user user-id

Optional. If authentication is required
to access the card manager, specifies
the authorized user, where user-id
represents the required user name.
Chapter 8 Loading and Managing Applications 87

installer.bat list -c oncardinstaller-url [-d] [-u user-id -p password]

list Command Example 1

In the following example, the installer displays summary information about
modules, applications, and libraries.

installer.bat list -c http://localhost:8019/cardmanager

list Command Example 2

In the following example, the installer displays detailed information about modules,
applications, and libraries.

installer.bat list -d -c http://localhost:8019/cardmanager

help Subcommand
Causes the installer to display summary or detailed information about one or more
installer subcommands.

help Subcommand Options

There are no command line options for the help subcommand.

help Subcommand Arguments

Command line arguments for the help command are optional and consist of the
name of the subcommand for which detailed help is requested.

help Subcommand Format

The following is an example of the list subcommand format:

installer.bat help [subcommand]

help Command Example 1

In the following example, the installer displays summary help about all of its
subcommands.
88 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

installer.bat help

help Command Example 2

In the following example, the installer displays detailed help about the load
subcommand.

installer.bat help load

Card Installer Use-Case
The following use case, Load an Application, illustrates a common use of the card
installer.

Load an Application
This use case loads an application module to the card.

Pre-Conditions
The following preconditions must be satisfied for this use case:

■ A valid module file available (in this use case, mymodule.war).

■ A signature details file containing Base64 encoded signature and certificate is
available (in this use case, sig.properties).

■ The on-card installer application must be accessible to the off-card installer client
via an http connection (in this use case,
http://localhost:8019/cardmanager).

Post-Conditions
The module is loaded and ready to be created.

Sequence of Events
1. The user executes the following command:
Chapter 8 Loading and Managing Applications 89

installer.bat load -c http://localhost:8019/cardmanager \

-s sig.properties -n app1 mymodule.war

2. The off-card installer connects to the on-card installer servlet and POSTs the
required information.

3. A message is displayed on the console with the success information.
90 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 9

Backwards Compatibility for Classic
Applets

This chapter describes how to generate application modules for classic applets by
using the Normalizer tool (Normalizer). These application modules contain classic
CAP files and provide backwards compatibility for the Java Card 3 platform by
enabling classic applets to run on Connected Edition and Classic Edition cards.

This chapter contains the following sections:

■ Generating Application Modules From Classic Applets

■ Converting Class Files to CAP Files

Generating Application Modules From
Classic Applets
Developers use the Normalizer to generate application modules for applets created
for previous version of the Java Card platform. The Normalizer can generate
application module from existing modules when there is no source is available.
These application modules contain CAP files and are downloadable on both the Java
Card 3 platform Classic Edition and Connected Edition cards.

The output from the tool is a classic module that contains the class files, the CAP
components of the CAP file, SIO proxies for classic SIOs (if used), and associated
classic application descriptors. The input to the tool must be classic CAP files and
associated EXP files. If the input files are not classic CAP files, the normalization will
fail. See Appendix A for a description of the application module and library formats
supported by the Java Card 3 platform card manager. FIGURE 9-1 illustrates the
process of generating application modules from classic applets and deploying them
on both the Java Card 3 platform Classic Edition and Connected Edition cards.
91

FIGURE 9-1 Process of Generating Application Modules From Classic Applets

Running the Normalizer
The command line interface for the Normalizer has the following syntax:

normalizer.bat subcommand [options]

The following is a list of the subcommands for the Normalizer:

■ normalize - Creates the package class files

■ copyright - Displays detailed copyright notice

■ help - Displays information about the Normalizer command

Export
Files

CAP
JAR
File

Application
Module
JAR File

Application
Module
JAR File

Java Card
Platform 3.0
Connected

Java Card
Platform 3.0

Classic

Java
Source
Files

Off-the-shelf
IDE

Normalization Packaging

DeploymentConversion to
CAP
92 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

normalize Subcommand
Use the normalize subcommand and its options to create the package class files.
Options are used with the normalize subcommand to specify input files, export
paths, export file names, and output directories.

normalize Subcommand Options

TABLE 9-1 identifies the normalize subcommand options and provides their
descriptions.

normalize Subcommand Format

The following is the format of the normalize subcommand. Options in the
subcommand are used in the sequence that are presented in TABLE 9-1. In this format
example, an input file and an output directory are specified as options:

normalizer.bat normalize --in file --exportpath path --out directory

normalize Subcommand Example

The following is an example of the normalize subcommand in which an input file
(myCAP.cap) is specified as an option:

normalizer.bat normalize -i myCAP.cap

TABLE 9-1 normalize Subcommand Options

Option Description

-i file
or
--in file

Specifies the input CAP file name.

-p path
or
--exportpath path

Specifies the path of the export files used by the tool.

-f file
or

--exportfile file

Specifies the name of the export file.

-o directory
or
--out directory

(Optional) This the default setting and does not have to be explicitly
set. Specifies the output directory that contains the export file.
Chapter 9 Backwards Compatibility for Classic Applets 93

copyright Subcommand
The copyright subcommand displays the detailed copyright notice. There are no
options associated with this subcommand.

help Subcommand
The help subcommand displays information about the Normalizer command.
Options are used with the help subcommand to specify the information that is
displayed about each sub-command.

Normalizer Summary Help

The following command displays summary help about the Normalizer:

normalizer.bat help

normalize Subcommand Help

The following command displays help about the normalize subcommand:

normalizer.bat help normalize

Converting Class Files to CAP Files
This section describes using the Converter tool (Converter) provided for the
Connected Edition as a stand-alone tool. When run as a stand-alone tool, the
Converter can take class files from javac and convert them into CAP files that can
be loaded by the Connected Edition platform.

Note – If you are developing a classic applet application you want to deploy using
the classic development kit, create your CAP file as described in this chapter. Then
take your CAP file to the classic development kit to deploy it on the classic Java
Card VM.
94 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

The Converter is part of the Developer Kit tool chain and is also used by the
Normalizer to create application modules for classic applets. The Normalizer can
generate application module from existing modules when there is no source is
available. See Chapter 9 for a description of using the Normalizer to create
application modules from classic applets.

The CAP file is a JAR-format file which contains the executable binary
representation of the classes in a Java package. The CAP file also contains a manifest
file that provides human-readable information regarding the package that the CAP
file represents. For more information on the CAP file and its format, see Chapter 6 of
the Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected
Edition.

When running the Converter as a stand-alone tool, developers can use the command
line options described in TABLE 9-2 to:

■ Specify the root directory where the Converter looks for classes.

■ Specify the root directories where the Converter looks for export files.

■ Use the token mapping from a pre-defined export file of the package being
converted. The Converter will look for the export file in the export path.

■ Set the applet AID and the class that defines the install method for the applet.

■ Specify the root directories where the Converter outputs files.

■ Specify that the Converter output one or more of the following:

■ CAP file

■ JCA file

■ EXP export file

■ Identify that the package is used as a mask.

When a package is used as a mask, restrictions on native methods are relaxed.

■ Specify support for the 32-bit integer type.

■ Enable generation of debugging information.

■ Turn off verification (the default of input and output files. Verification is default.

When the Converter runs, it performs the conversion process in the following
sequence:

■ Loads the package - If the exportmap option is set, the converter loads the
package from the export path (see “Specifying an Export Map” on page 96).
Loads the class files of the Java package and creates a data structure to represent
the package.

■ Subset checking - Checks for unsupported Java features in class files.

■ Conversion - Checks for consistency between the applet AIDs and the imported
package AIDs.
Chapter 9 Backwards Compatibility for Classic Applets 95

■ Reference Checking - Checks that all references are valid, internal referenced
items are defined in the package, import items are declared in the export files (see
“Loading Export Files” on page 97).

The Converter creates the JcImportTokenTable to store tokens for import items
(class, methods, and fields). If the Converter only generates an export file, it does
not check private APIs and byte code. Also included is a second round of subset
checking that operations do not exceed the limitations set by the Virtual Machine
Specification, Java Card Platform, Version 3.0.1, Connected Edition.

■ Optimization - Optimizes the bytecode.

■ Generates output - Builds and outputs the EXP export file and the JCA file,
checks the package version in the export file of the current package against the
package version specified in the command line. If the -exportmap option is used
in the command line, the export file specified in the command line must represent
the same version as that of the package. The converter does not support
upgrading the export file version.

Before writing the export and JCA files, the Converter determines the output file
path. The Converter assumes the output files are written into the director:
root_dir\package_dir\javacard. By default the root_dir is the classroot directory
specified by -classdir option. Users can specify a different root_dir by using -d
option.

Specifying an Export Map
You can request that the Converter convert a package using the tokens in a pre-
defined export file of the package being converted. Use the -exportmap command
option to do this. The Converter loads the pre-defined export file in the same way
that it loads other export files.

There are two distinct cases when using the -exportmap flag is desired:

■ When the minor version of the package is the same as the version given in the
export file (this case is called package reimplementation).

During package reimplementation, the API of the package (exportable classes,
interfaces, fields and methods) must remain exactly the same.

■ When the minor version increases (package upgrading).

During a package upgrade, changes that do not break binary compatibility with
preexisting packages are allowed (See “Binary Compatibility” in Section 4.4 of the
Virtual Machine Specification, Java Card Platform, Version 3.0.1, Connected
Edition).
96 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

For example, you must use the -exportmap option to preserve binary compatibility
with already existing packages that use the package when reimplementing a method
(package reimplementation) in an existing package or upgrading an existing
package by adding new API elements (new exportable classes or new public or
protected methods or fields to already existing exportable classes).

Loading Export Files
A Java Card technology-based export file (export file) contains the public API
linking information of classes in an entire package. The Unicode string names of
classes, methods and fields are assigned unique numeric tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. This package's export file can be used later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently-converted package references
a different package, the Converter loads the export file of the different package. An
applet package is linked with the java.lang, the javacard.framework and
javacard.security packages via their export files.

You can use the -exportpath command option to specify the locations of export
files. The path consists of a list of root directories in which the Converter looks for
export files. Export files must be named as the last portion of the package name
followed by the extension .exp. Export files are located in a subdirectory called
javacard, following the Java Card platform’s directory naming convention.

For example, to load the export file of the package java.lang, if you specify
-exportpath as c:\myexportfiles, the Converter searches the directory
JCDK3.0.1_ConnectedEdition\api_export_files\javalang\javacard for
the export file lang.exp.

Creating a debug.msk Output File
If you select the -mask and -debug options, the file debug.msk is created in the
same directory as the other output files. (Refer to “converter Command Options”
on page 99.)
Chapter 9 Backwards Compatibility for Classic Applets 97

Verification of Input and Output Files
By default, the converter invokes the off-card verifier for every input EXP file and on
the output CAP and EXP files.

■ If any of the input EXP files do not pass verification, then no output files are
created.

■ If the output CAP or EXP files do not pass verification, then the output EXP and
CAP files are deleted.

If you want to bypass verification of your input and output files, use the -noverify
command line option. Note that if the converter finds any errors, output files will
not be produced.

File and Directory Naming Conventions
This section describes the naming conventions used for the input and output files of
the Converter, and gives the correct location for these files. With some exceptions,
the Converter follows the Java programming language naming conventions for
default directories for input and output files. These naming conventions are also in
accordance with the definitions in Section 4.1 of the Virtual Machine Specification,
Java Card Platform, Version 3.0.1, Connected Edition.

Input File Naming Conventions
The files input to the Converter are Java class files named with the .class suffix.
Generally, there are several class files making up a package. All class files for a
package must be located in the same directory under the root directory, following
the Java programming language naming conventions. The root directory can be set
from the command line using the -classdir option. If this option is not specified,
the root directory defaults to be the directory from which the user invoked the
Converter.

For example, the following command line would be used to convert the package
java.lang, use the -classdir flag to specify the root directory as C:\mywrk:

converter -classdir C:\mywrk java.lang package_AID package_version

In the example, package_AID is the application ID of the package and package_version
is the user-defined version of the package. The Converter will look for all class files
in the java.lang package in the directory C:\mywrk\java\lang.
98 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Output File Naming Conventions
The name of the CAP file, export (EXP) file, and the Java Card Assembly (JCA) file
must be the last portion of the package specification followed by the extensions
.cap, .exp, and .jca, respectively. By default, the files output from the Converter
are written to a directory called javacard, a subdirectory of the input package's
directory. In the previous example, the output files are written by default to the
directory C:\mywrk\java\lang\javacard.

The -d flag is used to specify a different root directory for output.

In the previous example, using the -d flag to specify the root directory for output to
be C:\myoutput would cause, the Converter to write the output files to the
directory C:\myoutput\java\lang\javacard.

When generating a CAP file, the Converter creates a JCA file in the output directory
as an intermediate result. If you do not want a JCA file to be produced, do not use
the option -out JCA.The Converter deletes the JCA file at the end of the conversion
when the option -out JCA is not used.

Running the Converter
The command line interface for running the Converter takes one of the following
forms:

converter.bat options package_name package_aid major_version.minor_version

or

converter.bat -config filename

Use the -config subcommand and the associated configuration file to provide the
options and parameters to the Converter. See “Using a Command Configuration
File” on page 101.

converter Command Options
Use the converter command options to specify input files, an export path, an
export map, names, and output directories.
Chapter 9 Backwards Compatibility for Classic Applets 99

TABLE 9-2 identifies the converter command options and provides their
description.

TABLE 9-2 converter Command Options

Option Description

-classdir root- directory-of-class-hierarchy Specifies the root directory where the Converter
looks for classes.

-i Specifies support the 32-bit integer type.

-exportpath list-of-directories Specifies the root directories where the
Converter looks for export files.

-exportmap Uses the token mapping from the pre-defined
export file of the package being converted. The
converter will look for the export file in the
exportpath.

-applet AID class-name Sets the applet AID and the class that defines
the install method for the applet.

-d root-directory-for-output Specifies the root directories where the
Converter outputs the files.

-out [CAP] [EXP] [JCA] Specifies that the Converter output the CAP file,
and/or the JCA file, and/or the EXP export file.

-V

or
-version

Displays the Converter version number.

-v

or
-verbose

Enables verbose output.

-help Displays the contents of this table.

-nowarn Instructs the Converter to not report warning
messages.

-mask Identifies this package is used for a mask.
Restrictions on native methods are relaxed.

-debug Enables generation of debugging information.

-nobanner Suppresses standard output messages.

-noverify Turns off verification. Verification is default.

-sign Signs the output CAP file.

-keystore keystore Specifies the keystore to use in signing.
100 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Using a Command Configuration File
Instead of entering all of the command line arguments and options on the command
line, you can include them in a text-format configuration file. This is convenient if
you frequently use the same set of arguments and options.

The syntax to specify a configuration file is:

converter –config filename

The filename argument contains the file path and file name of the configuration file.

You must use double quote (“) delimiters for the command line options that require
arguments in the configuration file. For example, if the options from the command
line example used in “Using Delimiters with Command Line Options” on page 101
were placed in a configuration file, the result would look like this:

-exportpath ".\export files;.;.\JC_CONNECTED_HOME\
api_export_files"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

Using Delimiters with Command Line Options
If the command line option argument contains a space symbol, you must use
delimiters with this argument. The delimiter is a double quote (“ ”).

In the following sample command line, the Converter will check for export files in
the .\export files, .\JC_CONNECTED_HOME\api_export_files, and current
directories.

converter -exportpath ".\export files;.;.\JC_CONNECTED_HOME\
api_export_files"
MyWallet 0xa0:0x00:0x00:0x00:0x62:0x12:0x34 1.0

-storepass storepass Specifies the keystore password.

-alias alias Specifies the keystore alias to use in signing.

-passkey passkey Specifies alias password.

TABLE 9-2 converter Command Options (Continued)

Option Description
Chapter 9 Backwards Compatibility for Classic Applets 101

102 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 10

Using the APDU Tool

When installing and running applets on a Java Card technology-compliant smart
card, the APDU tool reads a script file containing Application Protocol Data Unit
(APDU) commands and sends them to the Java Card runtime environment. Each
APDU is processed and returned to the APDU tool, which displays both the
command and response APDU commands on the console. Optionally, the APDU
tool can write this information to a log file.

This chapter includes the following sections:

■ Running the APDU Tool From the Command Line

■ Using APDU Script Files

Running the APDU Tool From the
Command Line
The file used to invoke the APDU tool is the apdutool.bat batch file.

Unless otherwise specified, the APDU tool starts listening to APDU commands in
the default format of T=1 on the TCP/IP port specified by either the –p portNumber
parameter (for contacted) or the –p portNumber+1 parameter (for contactless). The
default port is 9025.

The command line usage for the APDU tool is:

apdutool.bat [-h hostname] [-nobanner] [-noatr] [-o outputFile]
[-p portNumber] [-s serialPort] [-t0]
[-version] [inputFile ...] [-verbose]
103

The option values and their actions are shown in TABLE 10-1.

Examples of Using the APDU Tool
The following examples show how to use the APDU tool to direct output to the
console or to a file.

Directing Output to the Console
The following command runs the APDU tool with the file example.scr as input.
Output is sent to the console. The default TCP port (9025) is used.

apdutool.bat example.scr

TABLE 10-1 apdutool Command Line Options

Option Description

-h hostname Specifies the host name on which the TCP/IP socket port is found.
(See the -p option.)

-help Displays online documentation for this command. To get help for
the APDU tool, run bin/apdutool.bat -help on the command
line.

-noatr Suppresses outputting an ATR (answer to reset).

-nobanner Suppresses all banner messages.

-o outputFile Specifies an output file. If an output file is not specified with the -o
option, output defaults to standard output.

-p portNumber Specifies a TCP/IP socket port other than the default port of 9025.

-s serialPort Specifies the serial port to use for communication, rather than a
TCP/IP socket port. For example, serialPort can be COM1.

To use this option, the javax.comm package must be installed on
your system.

If you enter the name of a serial port that does not exist on your
system, the APDU tool will respond by printing the names of
available ports.

-t0 Runs T=0 single interface.

-version Outputs the version information.

inputFile Allows you to specify the input script (or scripts).

-verbose Displays descriptive text during operation.
104 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Directing Output to a File
The following command runs the APDU tool with the file example.scr as input.
Output is written to the file example.scr.out.

apdutool.bat –o example.scr.out example.scr

Using APDU Script Files
An APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDU commands. Script file commands and C-APDU
commands are terminated with a semicolon (;). Comments can be of any of the three
Java programming language style comment formats (//, /*, or /**).

APDU commands are represented by decimal, hex or octal digits, UTF-8 quoted
literals or UTF-8 quoted strings. C-APDU commands may extend across multiple
lines.

C-APDU syntax for the APDU tool is as follows:

CLA INS P1 P2 LC [byte 0 byte 1 ... byte LC-1] LE;

Where:

■ CLA - ISO 7816-4 class byte.

■ INS - ISO 7816-4 instruction byte.

■ P1 - ISO 7816-4 P1 parameter byte.

■ P2 - ISO 7816-4 P2 parameter byte.

■ LC - ISO 7816-4 input byte count. 1 byte in non-extended mode, 2 bytes in
extended mode.

■ byte 0 ... byte LC-1 - Input data bytes.

■ LE - ISO 7816- 4 expected output length. 1 byte in non-extended mode, 2 bytes in
extended mode.
Chapter 10 Using the APDU Tool 105

The script file commands shown in TABLE 10-2 are supported:

These packages provide a convenient API for writing client-side applications that
communicate with Java Card technology enabled smart cards.

TABLE 10-2 Supported APDU Script File Commands

Command Description

contacted; Redirects APDU activity to the contacted or primary interface.

contactless; Redirects output to the contactless or secondary interface.

delay Integer; Pauses execution of the script for the number of milliseconds
specified by Integer.

echo "string"; Echoes the quoted string to the output file. The leading and trailing
quote characters are removed.

extended on; Turns extended APDU input mode on.

extended off; Turns extended APDU input mode off.

output off; Suppresses printing of the output.

output on; Restores printing of the output.

powerdown; Sends a powerdown command to the reader in the active interface.

powerup; Sends a powerup command to the reader in the active interface. A
powerup command must be sent to the reader prior to executing any
APDU on the selected interface.
106 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 11

Debugging Applications

This chapter describes the Debugger tool (Debugger) for Java Card 3 platform
application developers and how to use it as a separate tool with any Java enabled
IDE. Using this tool, developers can debug their applications in any Java enabled
IDE.

Debugger Architecture
The following diagram illustrates the debugger architecture for cjcre.

FIGURE 11-1 Debugger Architecture

DebugProxy

Java IDE

Command Line

(NetBeans)

Java Debugger
(JDB)

Host-1 Host-2 Host-3

JDWP

JDWP

KDWP
cjcre.exe
107

The Java Debug Wire Protocol (JDWP) used by the IDE is heavy for a small VM such
as that provided by cjcre. Consequently, cjcre uses KVM Debug Wire Protocol
(KDWP) to provide a minimum set of debugging capabilities. The debugproxy
translates and sends the translated JDWP commands from the IDE to cjcre in
KDWP format. Responses from cjcre are converted into JDWP format by
debugproxy before it sends them to the IDE.

The communication between cjcre, debugproxy, and the IDE happens through
sockets. Socket based communication enables developers to debug cjcre from
remote hosts. For example, cjcre could run on machine1, debugproxy could run on
machine2, and the IDE could run on machine3. Developers can also run cjcre,
debugproxy, and the IDE on same host.

Ports used by IDE communication to and from debugproxy and debugproxy
communication to and from cjcre are distinguished by the names “listen port” and
“remote port” respectively.

Using the Debugger
To fully utilize the capabilities of the Debugger, the application’s class files must be
compiled with debug info. This is done by specifying the -g flag for javac when
compiling the source files. These class files must be available to the debugproxy, so
that the line number information can be retrieved while stepping through the code.

▼ Debug a Java Card 3 Platform Application
1. Compile the source code with -g option.

All source files must be compiled using -g option to generate the debug information
in the class files. If the -g option is not used, it is not possible to set breakpoints in
the source code.

2. Start debugproxy (debugproxy.bat) from a command line window.

The debugproxy needs to know the location of class files being debugged. When
starting debugproxy, include -c (or --classpath) option in the command to
specify the path of the class files to be debugged.

The following is an example of a command that starts debugproxy and specifies
myapp.war as the location of the class files to be debugged:

debugproxy.bat -c myapp.war

See Appendix C for additional details about debugger command line options.
108 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

3. Attach to the debugger from the IDE.

This procedure depends on the IDE used. For procedures required to attach the
debugger to an IDE, refer to the documentation provided with the IDE.

4. Start the cjcre.exe with -debugger option.

This option enables the debugger functionality in cjcre. Without this option,
debugger functionality is disabled in cjcre.

5. Set break points in the the application source code.

This procedure depends on the IDE used. The following steps are typical for all
IDEs. Refer to the documentation provided with the IDE specific instructions.

a. Display the source code of the application in the IDE.

b. With the source code displayed in the IDE, open any file and set break
points where required.

Break points can be set at any time, even before attaching the debugger.

6. Step through the code by executing the application from within the IDE.

When a break point is hit, the IDE stops execution and highlights the current line.
Depending on the IDE being used, there are various options available to
developers for stepping over or stepping into the code.

Note – Various IDE windows are available to monitor items such as local variables
and threads. Refer to the documentation provided by the IDE for additional
information about the windows used in monitoring debugger and application
execution.

Configuring the Debugger
Various command line options are available to configure the debugproxy and the
cjcre. See Appendix C for additional details about debugger and cjcre command
line options.
Chapter 11 Debugging Applications 109

110 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

PART II Programming With the Development Kit

This part of the user’s guide provides solutions for various programming issues.

CHAPTER 12

Configuring the RI

This chapter describes the options used to configure a custom RI. This chapter is
useful only if you have a source release of the develoment kit. For real cards, there
are a few items such as Protection Domains and Certificates that must be setup at
manufacturing time. The RI provides a means of configuring some factory settings
by using the config.properties file under the lib folder.

This chapter contains the following sections:

■ Configuring Authenticators

■ Creating Custom Protection Domains

■ Configuring SSL Support

Configuring Authenticators
In the lib/config.properties file, the following properties must be added to
add an authenticator:

■ authenticator.index.uri

■ authenticator.index.factory

■ authenticator.index.pin

■ authenticator.index.digest

The following items describe the contents of the preceeding list of properties:

■ index is a zero based number. At startup, the RI starts reading these properties
beginning with index zero and creates authenticators until the sequence is broken.

■ The uri property provides the SIO uri used for this authenticator.

■ The factory property provides the factory class. For example,
com.sun.javacard.security.PINSessionAuthenticatorFactory.
113

■ The pin property provides the 4 digit pin number.

■ The digest property provides true or false depending on if it should use
digest.

Creating Custom Protection Domains
The Java Card 3 platform RI assigns a protection domain to an application based on
the certificate used to sign the application bundle with the Packager tool. In the
lib/config.properties file the following properties must be added to add a
new protection domain:

■ pd.pd-index.certificate

■ pd.pd-index.include.include-index

■ pd.pd-index.exclude.exclude-index

The following items describe the contents of the preceeding list of properties:

■ All the indexes (pd-index, include-index, and exclude-index) are zero based numbers.

■ The certificate property provides the BASE-64 encoded certificate.

■ The include.include-index property provides a list of permissions that should be
included for this protection domain.

■ The exclude.exclude-index property provides a list of permissions that should be
excluded for this protection domain.

Creating a Custom keystore
A custom ketstore can be crested by using the keytool to generate the certificates and
private keys.

Using keytool to Generate Certificates and Private Keys

Enter the following keytool command and options on the command line:

keytool -genkey -alias alias -keyalg RSA
keytool -selfcert -alias alias
keytool -list -rfc

java DumpPrivateKey

This is how the PolicyManager.java certificate and key were generated. For
scripting use the following keytool command:
114 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

keytool -keystore keystore -storepass keystore-password \
-alias alias -keypass alias-password -genkey \
-keyalg RSA -dname "cn=X, ou=U, o=O, c=US"

This keytool command runs in batch mode without prompting for input values.

Configuring SSL Support
In the lib/config.properties file, the following properties must be added to
add an ssl support:

■ ssl.serverIdentity

■ ssl.selfIdentityAsClient

■ ssl.selfIdentityAsServer

■ ssl.selfIdentitySSLPrivateKeyExp

■ ssl.selfIdentitySSLPrivateKeyMod

■ PSKIdentityHint=X509
Chapter 12 Configuring the RI 115

116 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 13

Building the RI From Sources

This chapter describes how to build a customized Java Card 3 platform RI. This
chapter is useful only if you have a source release of the develoment kit. The src
folder under JC_CONNECTED_HOME contains all of the source files for the RI
including VM code, and all tools (such as the packager and installer). You can
modify or add to these files and build a cutomized Java Card 3 platform RI
according to their specific requirements. The following actions are possible reasons a
developer might have for building a custom RI:

■ Add additional classes or packages if a proprietary API or other implementation
classes are used.

■ Fine tune the existing sources.

■ Update tools to work with target platform.

■ ROMize the applications. ROMizing masks the applications into the cjcre.exe.

This chapter contains the following sections:

■ Prerequisites to Building the RI

■ Contents of JC_CONNECTED_HOME\src Folder

■ Running the ROMizer Tool.

■ Building a Custom cjcre.exe

Prerequisites to Building the RI
Before building the RI, the following software must be installed on the system:

■ MinGW

■ JDK 6

■ ANT
117

See Chapter 2 for more details on the pre-requisites.

Contents of JC_CONNECTED_HOME\
src Folder
The following describes the contents of the src folder.

■ api - Contains all of the .java files required to build a custom RI. If a new
package must be added, it is added under this folder.

■ tools - Contains the source code of all shipped tools organized in separate folders.
To make a tool to work with a target platform, edit the code of the corresponding
tool.

■ romized_apps - Contains the source files for the CardManager.

■ vm/c - Contains the source files of core VM.

■ vm/h - Contains the header files of core VM.

■ vm/lib - Contains configuration files config.properties and system. See
Chapter 12 for additional details.

■ vm/ignore.list - If a class must be excluded from ROMization, add its name in
this file.

■ build.xml - The main file used to build the tools and cjcre.exe in a single step.

Running the ROMizer Tool
When building a custom RI, the ROMizer tool takes system class files and
application modules as input and creates a ROM image of these in an output ROM
image file. The ROMizer tool converts the class files into C code, which is often
called a ROM mask or simply a mask. For applications, the ROMizer tool stores non-
class files in appropriate directories in the internal Java Card 3 platform filesystem,
so that these files are available during the execution of the application. See “Building
a Custom cjcre.exe” on page 120 for detailed description of using the ROMizer
tool.

Either of the following commands will run the Romizer tool:

romizer.bat -o ROM-output- filename -e EEPROM- filename -a apps-filename

or
118 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

romizer.bat --out ROM-output- filename --e2pfile EEPROM -filename \
--apps apps-filename

In the previous format examples, the following parameters are used:

■ -o (or --out) - Must be followed by the path to output file where the mask is
written. For example:

--out MyROMJava.c

See “Romizer Tool Output” on page 120 for a description of the ROM output file.

■ -e (or --e2pfile) - Must be followed by the path to the initial eeprom file.
For example:

--e2pfile myeeprom.eeprom

■ -a (or --apps) - Must be followed by the path to the applications list file which
contains the list of applications to be masked. For example:

--apps myapps.list.

See “Example Contents of Apps List File” on page 120 for a description of the
configuration file.

Apps list File Contents
The apps list file contains information about applications that needs to be romized.
All system classes and applications must be provided as input to the romizer in
compressed files (.jar, .war, or .zip files).

Each application file must be specified in the apps list file on a new line. Each
application module entry in the configuration file must provide additional
information as noted in the following format example:

application-module -t <web|classic-applet|extended-applet|classic-lib| \

extension-lib> -s signature-file -n module-name

In the previous example, the following parameters are used:

■ application-module is the .jar, .war, or .zip application module file.

■ -t followed by web, classic-applet, extended-applet, classic-lib, or
extension-lib to identify the type of application being romized.

■ -s followed by the name of the properties file that contains the BASE64 encoded
certificate and signature, where signature-file represents the file name.

This file is a simple properties file containing the following properties as name-
value pairs:

■ signature=base64 encoded signature

■ certificate=certificate to validate this group and digest
Chapter 13 Building the RI From Sources 119

■ -n followed by the module name that will be referenced by cjcre.exe for this
application module.

The following is an example of an entry in the configuration file:
HelloWorld.war -t web -s mykey1.txt -n helloapp

Example Contents of Apps List File
The following is an example of the contents of an apps list file:
HelloWorld.war -t web -s key1.txt -n helloapp

GCFClient.war -t web -s key2.txt -n gcfapp

Romizer Tool Output
The output created by running the Romizer tool is a preliminary EEPROM file and a
C language source file that contains the ROM image of the input file including the
following:

■ Java class files that contain the API implementation

■ Implementation of containers

■ Applications selected by the user for romization

Building a Custom cjcre.exe
The build.xml provided in the src folder build everything including tools and
cjcre.exe. This section gives details on how the cjcre.exe is generated.

Developers can modify the RI by adding or modifying the reference implementation
code and using the ROMizer tool. RI consists of .java and C source files. The core
VM is written in C programming language and rest of the API and supported
implementation is written in the Java programming language. The ROMizer tool
converts the class files into C code, which is often called the ROM mask or simply
the mask. Then all the C source code is compiled to an executable to generate
cjcre.exe.

The ROM image can include any supported application files (web, extended-applet,
classic-applet, extension library, and classic library). ROMized applications can be
instantiated without requiring download after the runtime environment starts up.
The ROMizer tool takes system class files and application module as input and
creates a ROM image of these in an output ROM image file.
120 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

For applications, the ROMizer tool stores the non-class files in appropriate
directories in the internal Java Card 3 platform filesystem, so that these files are
available during the execution of the application.

The following diagram illustrates the procedure of building the cjcre.exe from
sources.

EXAMPLE 0-1 Building cjcre.exe From Sources

Java files are compiled into class files using the javac compiler. Details of
applications to be ROMized are listed in a text file. The class files and the list file are
given as input to the romizer.bat tool (see “Preprocessor Symbols to Customize
the VM” on page 122). By default romizer.bat generates ROMJava.c, a C file that
contains the information about all classes and applications.

The GNU C compiler (gcc) is used to build the final executable. The generated
ROMJava.c and the rest of the C files are compiled using gcc, which generates
cjcre.exe. Use the provided ANT build file to build custom cjcre.exe. See
“Build a Custom RI” on page 122.

*.java javac *.class

romizer.bat

ROM Java.c

*.c and *.h

gcc cjcre.exe

Applications

*.war
*.eap
*.cap
Chapter 13 Building the RI From Sources 121

Preprocessor Symbols to Customize the VM
The following preprocessor symbols can be used to customize the Java Card VM:

■ INCLUDEDEBUGCODE=0

■ TRACE_EXCEPTIONS_NATIVE=1

■ INCLUDE_FIREWALL_DEBUG_CODE=0

■ ENABLE_JAVA_DEBUGGER=1

Enables the kdwp code. Default is 1. If set to 0, then cjcre can not be used to
debug the applications.

■ APDU_PROTOCOL_T=0

Controls the protocol that will be supported by cjcre. default is t=0. Valid
values are 0, 1 for T=0, T=1 respectively.

■ APDU_INTERFACE=0

Contacted or contactless or both. Valid values are 0, 1, 2 for contacted,
contactless and Dual respectively

▼ Build a Custom RI
1. Edit the files or add more files.

2. Update the tools source code if required.

3. From command line navigate to the src folder and run the ant command.

If there is a apps list file that contains the list of applications for ROMization, set
the property apps_file_for_romizer while running the ant as shown below.

ant -Dapps_file_for_romizer=path-to-apps-file

The ant command creates the JC_CONNECTED_HOME\custom_build folder
with a bin and lib folder under it.

■ The bin directory contains the new cjcre.exe and all of the other tool’s
.bat files.

■ The lib folder contains the .jar files and config files.

JC_CONNECTED_HOME\custom_build\bin and
JC_CONNECTED_HOME\custom_build\lib are similar to
JC_CONNECTED_HOME\bin and JC_CONNECTED_HOME\lib, except that
custom_build contains the binaries from the updated source code.
122 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

▼ Test the Custom RI
● Use the following command to run the new cjcre.exe file stored in

JC_CONNECTED_HOME\custom_build\bin.

JC_CONNECTED_HOME\custom_build\bin\cjcre.exe [options]

See Chapter 5 for a description of the available options.

Files created as a result of running or building the custom RI are stored in the
JC_CONNECTED_HOME\custom_build\bin and JC_CONNECTED_HOME\
custom_build\lib directories. These directories are created the first time the RI is
built and will be over written every time the RI is built.
Chapter 13 Building the RI From Sources 123

124 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 14

Programming to the Java Card RMI
Client-Side API

This chapter describes how to use the Java Card RMI client-side API. Support for the
Java Card RMI client-side API is optional according to the Java Card specifcations,
but it has been implemented in the Classic RI available in the Classic development
kit. Note that it has not been implemented in the Connected RI available in the
Connected development kit.

A Java Card RMI client application runs on a Card Acceptance Device (CAD)
terminal that supports a Java SE or Java ME platform. The client application requires
a portable and platform-independent mechanism to access the Java Card RMI server
applet executing on the smart card.

The basic client-side framework is implemented in the package
com.sun.javacard.javacard.rmiclientlib and
com.sun.javacard.javacard.clientlib.

The library is located in the file lib/tools.jar.

The reference implementation of the Java Card RMI client-side API is based on
APDU I/O for its card access mechanisms. For more information on APDU I/O, see
Chapter 15.

Remote Stub Object
The Java Card RMI API supports two formats for passing remote references. The
format for remote references containing the class name requires stubs for remote
objects available to the client application.
125

The standard Java RMIC compiler tool can be used as the stub compilation tool to
produce stub classes required for the client application. To produce these stub
classes, the RMIC compiler tool must have access to all the non-abstract classes
defined in the applet package which directly or indirectly implement remote
interfaces. In addition, it needs to access the .class files of all the remote interfaces
implemented by them.

If you want the stub class to be Java Card RMI-specific when it is instantiated on the
client, it must be customized with a Java Card platform-specific implementation of
the CardObjectFactory interface.

The standard Java RMIC compiler is used to generate the remote stub objects.
JCRemoteRefImpl, a Java Card platform-specific implementation of the
java.rmi.server.RemoteRef interface, allows these stub objects to work with
the Java Card RMI API. The stub object delegates all method invocations to its
configured RemoteRef instance.

The com.sun.javacard.rmiclientlib.JCRemoteRefImpl class is an example
of a RemoteRef object customized for the Java Card platform.

For examples of how to use these interfaces and classes, see Application Programming
Notes, Java Card Platform, Version 3.0.1, Classic Edition.

Note – Since the remote object is configured as a Java Card platform-specific object
with a local connection to the smart card via the CardAccessor object, the object is
inherently not portable. A bridge class must be used if it is to be accessed from
outside of this client application.

Note – Some versions of the RMIC do not treat Throwable as a superclass of
RemoteException. The workaround is to declare remote methods to throw
Exception instead.

Java Card RMI Client-Side API
The two packages in the Java Card RMI client-side reference implementation
demonstrate remote stub customization using the RMIC compiler generated stubs
and card access for Java Card applets.

The package com.sun.javacard.javacard.rmiclientlib implements Java
Card RMI-specific functionality.
126 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

The package com.sun.javacard.javacard.clientlib implements basic
functionality to exchange APDUs with a smart card or a smart card simulator. This
implementation of clientlib requires that the ApduIO library is included in the
CLASSPATH.

In the release bundles, the Javadoc tool files for this API are located at:

JC_CLASSIC_HOME/docs/rmijavadocs

Package rmiclientlib
This package includes several classes.

■ class JCRMIConnect—The main class of the RMI framework that provides
methods to select a card applet and to get an initial reference.

■ class JCCardObjectFactory—An implementation of the CardObjectFactory that
processes the data returned from the card in the format defined in the Runtime
Environment Specification, Java Card Platform, Version 3.0.1, Classic Edition. Any
object references must contain class names.

■ class JCCardProxyFactory—The JCCardProxyFactory class is similar to
JCCardObjectFactory, but processes references containing lists of names.
JCCardProxyFactory uses the JDK 1.4.+ proxy mechanism to generate proxies
dynamically.

■ class JCRemoteRefImpl—An implementation of interface
java.rmi.server.RemoteRef. These remote references can work with stubs
generated by the RMIC compiler with the -v1.2 option.

The main method is:
public Object invoke(Remote remote, Method method, Object[]
params, long unused) throws IOException, RemoteException,
Exception

This method prepares the outgoing APDU, passes it to CardAccessor, and then
uses CardObjectFactory to parse the returned APDU and instantiate the
returned object or throw an exception.

Package clientlib
This package includes an interface and a class.

■ interface CardAccessor—An interface defining methods to exchange APDUs with
a card and to close connection to a card.
Chapter 14 Programming to the Java Card RMI Client-Side API 127

■ class ApduIOCardAccessor—A simple implementation of the CardAccessor
interface that passes the APDUs to a card or a card simulator using the ApduIO
library. This class takes parameters to start the ApduIO from the file
jcclient.properties, which must be included in CLASSPATH.
128 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 15

Working with APDU I/O

This chapter describes the APDU I/O API, which is a library used by many Java
Card development kit components, such as apdutool, and the RMI client
framework, see Chapter 14.

The APDU I/O library can also be used by developers to develop Java Card client
applications and Java Card platform simulators. It provides the means to exchange
APDUs by using the T=0 protocol over TLP224, by using T=1, and by using the
PC/SC API. (However, note that PC/SC is unsupported and may not work on all
platforms with all card readers).

The library is located in the file lib/tools.jar.

The APDU I/O API
The following sections describe the APDU I/O API. All publicly available APDU
I/O client classes are located in the package com.sun.javacard.apduio.

Javadoc tool files for the APDU I/O APIs are also in a PDF file located in this bundle
at JC_CONNECTED_HOME\docs\apduiojavadocs.pdf.

APDU I/O Classes and Interfaces
The APDU I/O classes and interfaces are described in this section.

■ class Apdu

Represents a pair of APDUs (both C-APDU and R-APDU). Contains various
helper methods to access APDU contents and constants providing standard
offsets within the APDU.

■ interface CadClientInterface
129

Represents an interface from the client to the card reader or a simulator. Includes
methods for powering up, powering down and exchanging APDUs.

■ void exchangeApdu(Apdu apdu)

Exchanges a single APDU with the card. Note that the APDU object contains
both incoming and outgoing APDUs.

■ public byte[] powerUp()

Powers up the card and returns ATR (Answer-To-Reset) bytes.

■ void powerDown(boolean disconnect)

Powers down the card. The parameter, applicable only to communications with
a simulator, means “close the socket”. Normally, it is true for contacted
connection, false for contactless. See “Two-interface Card Simulation” on
page 131 for more details.

■ void powerDown()

Equivalent to powerDown(true).

■ abstract class CadDevice

Factory and a base class for all CadClientInterface implementations included
with the APDU I/O library. Includes constants for the T=0, T=1 and PC/SC
(unsupported) clients.

The factory method static CadClientInterface
getCadClientInstance(byte protocolType, InputStream in,
OutputStream out) returns a new instance of CadClientInterface. The in
and out streams correspond to a socket connection to a simulator. Protocol type
can be one of:

■ CadDevice.PROTOCOL_T0

■ CadDevice.PROTOCOL_T1

■ CadDevice.PROTOCOL_PCSC

The parameters, InputStream and OutputStream, are not used for PC/SC
(unsupported).

Exceptions
Various exceptions may be thrown in case of system malfunction or protocol
violations. In all cases, their toString() method returns the cause of failure. In
addition, java.io.IOException may be thrown at any time if the underlying
socket connection is terminated or could not be established.

■ CadTransportException extends Exception

■ T1Exception extends CadTransportException
130 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ TLP224Exception extends CadTransportException

Two-interface Card Simulation
To simulate dual-interface cards with the RI the following model is used:

■ The simulator (cjcre.exe) listens for communication on two TCP sockets: (n)
and (n+1), where n is the default (9025) or the socket number given in the
command line.

■ The client creates two instances of the CadClientInterface, with protocols T=
1 on both. One of these instances communicates on the port (n), while the other
communicates on the port (n+1).

■ Each of these client interfaces needs to issue the powerUp command before being
able to exchange APDUs.

■ Issuing the powerDown command on the contactless interface closes all
contactless logical channels. After this, the contacted interface is still available to
exchange APDUs. The client also may issue powerUp on a contactless interface
again and continue exchanging APDUs on the contactless interface too.

■ Issuing the powerDown command on the contacted interface closes all channels
and causes the simulator (cjcre.exe) to exit. That is, any activity after powering
down the contacted interface requires restarting the simulator and reestablishing
connections between the client and the simulator.

■ At most, one socket can be processing an APDU at any time. The client may send
the next APDU only after the response of the previous APDU is received. This
means, behavior of the client+simulator still remains deterministic and
reproducible.

■ If you have a source release of the Java Card development kit, you can see a
sample implementation of such a dual-interface client in the file
ReaderWriter.java inside the apdutool source tree.

Examples of Use
The following sections give examples of how to use the APDU I/O API.
Chapter 15 Working with APDU I/O 131

To Connect To a Simulator
To establish a connection to a simulator such as cjcre.exe , use the following code.

This code establishes a T=0 connection to a simulator listening to port 9025 on
localhost. To open a T=1 connection instead, in the last line replace PROTOCOL_T0
with PROTOCOL_T1.

Note – For dual-interface simulation, open two T=1 connections on ports (n) and
(n+1), as described in “Two-interface Card Simulation” on page 131.

To Establish a T=0 Connection To a Card
To establish a T=0 connection to a card inserted in a TLP224 card reader, which is
connected to a serial port, use the following code.

Note – For this code to work, you need a TLP224-compatible card reader, which is
not widely available. You also need the javax.comm library installed on your
machine. See “javax.comm Package” on page 133 for details on how to obtain this
library.

CadClientInterface cad;
Socket sock;
sock = new Socket(“localhost”, 9025);
InputStream is = sock.getInputStream();
OutputStream os = sock.getOutputStream();
cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_T0, is, os);

String port = “com1”; // serial port's name
CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier(port);
String appname = “Name of your application”;
int timeout = 30000;
CommPort commPort = portId.open(appname, timeout);
InputStream is = commPort.getInputStream();
OutputStream os = commPort.getOutputStream();
cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_T0, is, os);
132 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

javax.comm Package
Install javax.comm package if you are planning to use the development kit to
communicate with a TLP224-compatible card reader.

Use the javax.comm package included in the latest version of the Java
Communications API, available on Sun’s web site at:
http://java.sun.com/products/javacomm

Follow the instructions provided in the file Readme.html to install the package, and
make sure that the comm.jar file is added to the CLASSPATH.

To Establish a Connection To a
PC/SC-Compatible Card Reader
To establish a connection to the default PC/SC-compatible card reader
(unsupported) installed on the machine, use the following code.

cad=CadDevice.getCadClientInstance(CadDevice.PROTOCOL_PCSC, null,
null);

To Power Up And Power Down the Card
To power up the card, use the following code.

cad.powerUp();

To power down the card and close the socket connection (for simulators only), use
either of the following code lines.

cad.powerDown(true);

or

cad.powerDown();

To power down, but leave the socket open, use the following code. If the simulator
continues to run (which is true if this is contactless interface of the RI) you can issue
powerUp() on this card again and continue exchanging APDUs.

cad.powerDown(false);

The dual-interface RI is implemented in such a way that once the client establishes
connection to a port, the next command must be powerUp on that port.

For example, the following sequence is valid:
Chapter 15 Working with APDU I/O 133

http://java.sun.com/products/javacomm
http://java.sun.com/products/javacomm

1. Connect on "contacted" port.

2. Send powerUp to it.

3. Exchange some APDUs.

4. Connect on "contactless" port.

5. Send powerUp to it.

6. Exchange more APDUs.

However, the following sequence is not valid:

1. Connect on "contacted" port.

2. Connect on "contactless" port.

3. Send powerUp to any port.

To Exchange APDUs
To exchange APDUs, first create a new APDU object using the following code:

Apdu apdu = new Apdu();

Copy the header (CLA, INS, P1, P2) of the APDU to be sent into the
apdu.command field.

Set the data to be sent and the Lc using the following code:

apdu.setDataIn(dataIn, Lc);

where the array dataIn contains the C-APDU data, and the Lc contains the data
length.

Set the number of bytes expected into the apdu.Le field.

Exchange the APDU with a card or simulator using the following code:

cad.exchangeApdu(apdu);

After the exchange, apdu.Le contains the number of bytes received from the card or
simulator, apdu.dataOut contains the data received, and apdu.sw1sw2 contains
the SW1 and SW2 status bytes.

These fields can be accessed through the corresponding get methods.
134 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

To Print the APDU
The following code prints both C-APDU and R-APDU in the apdutool output
format.

System.out.println(apdu)
Chapter 15 Working with APDU I/O 135

136 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

CHAPTER 16

Generating SSL Keys and
Certificates

This chapter describes how to generate a certificate that can be used in SSL and
HTTPS transactions.

SSL and HTTPS Certificates and Keys
An SSL implementation needs four algorithms, digital signature., key establishment,
and bulk encryption, and message digest. The Java Card 3 platform implements the
SSL key establishment algorithm through the use of the following set of certificates
and keys as key=value pairs in system.config:

■ ssl.serverIdentity - The CA certificate.

■ ssl.selfIdentityAsServer - The server public certificate.

■ ssl.selfIdentitySSLPrivateKeyMod - The server private key (mod).

■ ssl.selfIdentitySSLPrivateKeyExp - The server private key (exp).

■ ssl.selfIdentityAsClient -The client public certificate.

Custom implementations require that the developer generate corresponding custom
certificates and keys. The certificates and keys are used by the Card Manager to
verify the digital signature of WAR file.

▼ Generating an SSL Certificate
1. Generate a server key and certificate signing request (csr):

openssl genrsa -out s.key 1024

openssl req -new -key s.key -out server.csr
137

2. Generate a CA key and self-signed certificate:

openssl genrsa -out ca.key 1024

openssl -req new -x509 -days 365 -key ca.key -out ca.crt

3. Sign the csr and create the certificate:

sign.sh server.csr
138 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

APPENDIX A

Application Module and Library
Formats

This appendix describes the application module and library formats supported by
the Java Card 3 platform card manager. Applications are distributed and deployed as
application module JAR files. The application module distribution format JAR file
contains one application. Libraries are distributed and deployed as standard library
JAR files containing the library classes.

There are two types of library formats:

■ The extension library JAR file is a standard library JAR format containing Java
class files. Extension library classes are accessible to all applications on the card.
Instances of classes instantiated from the extension library are placed in the owner
context of the application which creates the instance.

■ The classic library JAR file is a standard JAR library format containing Java class
files. Classic library classes are only accessible to the classic applications on the
card. Instances of classes instantiated from the classic library are placed in the
owner context of the classic application which creates the instance.

This appendix contains the following sections:

■ Web Application Module Format

■ Extended Applet Application Module Distribution Format

■ Classic Applet Application Module Format

■ Extension Library Format

■ Classic Library Format
139

Web Application Module Format
FIGURE A-1 shows the directory structure of the web application module distribution
format. The structure must be that of the web archive (.war) file with the following
differences:

■ No support for application private library directory WEB-INF/lib

■ An additional Java Card 3 platform-specific application descriptor file
javacard.xml is supported. The format of this descriptor is specified in Runtime
Environment Specification, Java Card Platform, Version 3.0.1, Connected Edition.

FIGURE A-1 Web Application Module Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the web application module format.

WEB-INF/

META-INF/

classes/

web.xml

javacard.xml

MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

<Resource Files>

/

140 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Extended Applet Application Module
Distribution Format
FIGURE A-2 shows the directory structure of the extended applet application module
format. See the Runtime Environment Specification, Java Card Platform, Version 3.0.1,
Connected Edition for specific details.

FIGURE A-2 Extended Applet Application Module Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the extended applet application module format.

Classic Applet Application Module
Format
FIGURE A-3 shows the directory structure of the classic applet application module
distribution format. The structure is similar to that of the extended applet application
module with the following differences:

■ The classes directory contains only one package and optionally a subpackage
named proxy containing SIO proxy classes.

■ The Classic Edition’s CAP file components, *.cap, are included in the JAR file.

APPLET-INF/

META-INF/

classes/

applet.xml

javacard.xml

MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

/

Appendix A Application Module and Library Formats 141

FIGURE A-3 Classic Applet Application Module Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the requirements of the classic applet application
module format.

Extension Library Format
The extension library distribution format uses the Java Platform Standard Edition
library JAR file structure. FIGURE A-4 shows the format of a Java Platform Standard
Edition library JAR file format.

FIGURE A-4 Java Platform Standard Edition Library JAR Format

META-INF/ MANIFEST.MF

<package name>/*

<package name>/*

<package name>/*

/

142 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the extension library format.

Classic Library Format
FIGURE A-5 shows the format of a classic library distribution format. The classic
library distribution format uses the Java Platform Standard Edition library JAR file
format (see FIGURE A-4) with the following restrictions and additions:

■ It contains only one package and, optionally, a subpackage proxy containing SIO
proxy classes.

■ It includes the classic CAP file components, *.cap, in a directory named
javacard that is in a subdirectory representing the library package directory as
described in Virtual Machine Specification, Java Card Platform, Version 3.0.1, Classic
Edition. The format of the CAP file components are described in Virtual Machine
Specification, Java Card Platform, Version 3.0.1, Classic Edition.

FIGURE A-5 Classic Library Format

See the Runtime Environment Specification, Java Card Platform, Version 3.0.1, Connected
Edition for specific details about the classic library format.
Appendix A Application Module and Library Formats 143

144 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

APPENDIX B

Installed Directories and Files

The Development Kit source bundles install files and directories containing the
binary files and source code described in TABLE B-1 and TABLE B-2. Except for the src
directory and its contents, the binary bundles install the files described in TABLE B-1.
The files and directories are installed under the root installation directory, c:\
JCDK3.0.1_ConnectedEdition or in the directory that you specified during
installation. The root installation directory is referred to as JC_CONNECTED_HOME
in this guide.

TABLE B-1 Installed Directories and Files

Directory or File Description

COPYRIGHT-software.html The copyright file for the Java Card 3
platform.

COPYRIGHT-docs.html The copyright file for the documentation of
the Java Card 3 platform.

RELEASENOTES.html The release notes for this Java Card 3
platform Development Kit.

document.css The style sheet for the HTML
documentation.

platform.properties Specfies properties of the Java Card 3
platform RI that are used by the tools.

api_export_files/ Contains java, javacard, and
javacardx directories of API export files.

bin/ Contains all shell scripts and batch files
(including the cjcre.exe binary
executable) used in running the tools .
145

docs/ Contains the following:
• apduiojavadocs.pdf -
A compilation of the Javadoc tool files for
the publicly available APDU I/O client
classes in PDF format.
• rmijavadocs.pdf -
A compilation of the Javadoc tool files for
the Java Card RMI client-side reference
implementation in PDF format. Java Card
RMI client-side reference implementation
demonstrates remote stub customization
using the RMIC compiler generated stubs
and card access for Java Card applets.
Note - The RI for the Classic Edition
supports RMI but the RI for the Connected
Edition does not.
• JCDevKitUG-Connected-3_0_1.pdf -

this user’s guide.
• api javadoc folder - contains the

Javadoc tool files for the API in HTML
format.

• UserGuide_html folder - contains the
HTML version of this user’s guide.

legal/ Contains three files:
• TechnologyEvaluationLicense.txt

- License for the Java Card 3 platform.
• THIRDPARTYREADME.txt - License for

the Jetty HTTP Server.
• Distribution_ReadME.txt -

Describes the terms and conditions for
redistribution of the Java Card
Development Kit.

TABLE B-1 Installed Directories and Files (Continued)

Directory or File Description
146 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

lib/ Contains all Java programming language
JAR files and config files required for the
tools:

• ant-contrib-1.0b3.jar

• api_classic.jar

• api_connected.jar

• bcel-5.2.jar

• commons-cli-1.0jar

• commons-codec-1.3.jar

• commons-httpclient-3.0.jar

• commons-logging-1.1.jar

• config.properties

• jcapt.jar

• jctasks.jar

• nbtasks.jar

• nbutils.jar

• nhelper.dll

• romizer.jar

• system.properties

• tools.jar

samples/classic_applets Contains source files and directories for
classic applet sample applications adapted
to run on the Connected Edition.

samples/extended_applets Contains source files and directories for
extended applet sample applications.

samples/keystore Contains keystore and other certificate files
for use by the samples provided in this
release. These keystore and other certificate
files are for demonstration purposes only
and cannot be used for developing
deployable applications.

TABLE B-1 Installed Directories and Files (Continued)

Directory or File Description
Appendix B Installed Directories and Files 147

Directories and Files Installed in the src Directory
TABLE B-2 describes the src directory and files installed under c:\
JCDK3.0.1_ConnectedEdition (or the alternate directory you specified during
installation).

samples/reference_apps Contains source files and directories for
sample refernce applications.

samples/web Contains source files and directories for
sample web applications. .

src/
Note – This directory
is only installed by
the source bundle.

Contains the source code for the Java Card
API, the ROMized applications, the
Development Kit tools, and the Java Card
virtual machine. For more information on
the contents of the directory, see
“Directories and Files Installed in the src
Directory” on page 148.

TABLE B-2 Contents of the src Directory

Directory or File Description

build.xml Resource file for rebuilding the Development Kit source bundle.

apiImpl.jar

bat.template

crypto.jar

api/ Sources for the Java Card API version 3.0.1 in the following
subdirectories:
• com\sun

• java

• javacard

• javacardx

• javax

• org\mortbay

TABLE B-1 Installed Directories and Files (Continued)

Directory or File Description
148 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

romized_apps Sources for the CardManager servlet.

tools/ Sources for Development Kit tools.

vm/ Sources for the Java Card virtual machine in the following
subdirectories and file:
c - C programming language sources.
h - Header files for the C programming language sources.
lib - System and internal web configuration files
ignore.list - List of classes ignored by the ROMizer

TABLE B-2 Contents of the src Directory (Continued)

Directory or File Description
Appendix B Installed Directories and Files 149

150 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

APPENDIX C

Development Kit Tool Commands

This appendix provides a quick reference to the following commands used to run the
Development Kit tools:

■ apdutool.bat Command

■ cjcre.exe Command

■ converter.bat Command

■ debugproxy.bat Command

■ installer.bat Command

■ javacardc.bat Command

■ normalizer.bat Command

■ packager.bat Command

■ romizer.bat Command

apdutool.bat Command
Use the apdutool.bat command from the JC_CONNECTED_HOME directory to
send APDU commands to cjcre.exe where they are processed and returned to the
APDU tool. The APDU tool displays both the command and response APDU
commands on the console. See Chapter 10 for detailed information about the APDU
tool.

The APDU tool is run from the command line using the following syntax:

apdutool.bat [-t0] [-verbose] [-nobanner] [-noatr] [-o outputFile]
[-h hostname] [-p port] [-s serialPort] [-version]
[inputFile ...]

Options for the apdutool.bat command include the following:
151

■ -t0

Runs T=0 single interface

■ -verbose

Displays descriptive text during operation.

■ -nobanner

Suppresses all banner messages.

■ -noatr

Suppresses outputting an ATR (answer to reset).

■ -o outputFile

Specifies an output file. If an output file is not specified with the -o option, output
defaults to standard output.

■ -h hostname

Specifies the host name on which the TCP/IP socket port is found. See the -p
portNumber option.

■ -p port

Specifies a TCP/IP socket port other than the default port (9025)

■ -s serialPort

Specifies that the serial port is used for communication, rather than a TCP/IP
socket port. For example, serialPort can be COM1.

To use this option, the javax.comm package must be installed on your system.

If you enter the name of a serial port that does not exist on your system, the
APDU tool will respond by printing the names of available ports.

■ -version

Outputs the version information.

■ inputFile

Allows you to specify the input script or scripts.

■ -help

Displays online documentation for the apdutool.bat command. To get help for
the APDU tool, run bin/apdutool.bat -help on the command line.
152 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

cjcre.exe Command
Use the cjcre.exe command to run the reference implementation (RI). The RI is a
pre-built executable located in JC_CONNECTED_HOME\bin. See Chapter 5 for
detailed information about the RI.

Assuming that JC_CONNECTED_HOME\bin is on your path, the following syntax is
used to run the RI:

cjcre.exe [options]

cjcre.exe Options
Options must follow the cjcre.exe command on the command line. Valid
cjcre.exe command options used in the command line consist of one or more of
the following:

■ -config config file

Sets a new configuration file. The default is lib/config.properties.

■ -contactedport portnumber

Sets the port used to simulate the contacted interface for APDU. The default value
for -contactedport is 9025.

■ -contactedprotocol protocol

Sets the APDU protocol on this port, either T=0 or T=1. The default value for the
-contactedprotocol is T=1.

■ -contactlessport port-number

Port number used to simulate contactless interface. Default is 9026. The protocol,
T=CL, cannot be changed.

■ -corsize size

Sets the Clear On Reset (COR) memory size in which a portion of RAM is
dedicated to COR memory. The range of values that the Java Card runtime
environment can accept from the command line is 2K to 8K. The default value is
4K. size is set as a value in bytes (2345) or kilobytes (2K).

■ -Dname=value

Supplies a system property (such as -Dmyproperty=myvalue). System properties set
in this manner can be retrieved using the API’s
System.getProperty("myproperty") method. A maximum of 50 -D
properties can be passed in the command line.
Appendix C Development Kit Tool Commands 153

■ -debugger

Runs cjcre in debug mode.

■ -debugport portnumber

Sets the debug port where the Debug proxy communicates. The default value for
-debugport is 7019.

■ -e2pfile filename

Supplies the file name in which the EEPROM image is stored.

■ -e2psize size

Configures the amount of EEPROM used. size is set as a value in bytes (2345),
kilobytes (32K), or megabytes (4M). The specified size is rounded up to a multiple
of 4. For example, a size specified at 253, is rounded up to 256.

The range of values that the Java Card runtime environment can accept from the
command line is 1M to 32M. The default value used is 4M. The value required to
run the samples is between 2M and 32M.

■ -enableassertions

Enables Java code assertions (the assert keywork in Java code).

■ -help [copyright]

Prints help and copyright messages.

■ -httpport portnumber

Sets the HTTP port number on which cjcre will be listening. The default value
for -httpport is 8019.

■ -loggerlevel <none|fatal|error|warn|info|verbose|debug|all>

Sets the type of log messages output. All log messages up to the specified level are
displayed.

■ -nosuspend

Valid when -debugger is specified. Will not suspend threads at cjcre startup.

■ -ramsize size

Configures the amount of RAM used. size is set as a value in bytes (2345),
kilobytes (32K), or megabytes (4M).

The range of values that the Java Card runtime environment can accept from the
command line is 64K to 32M. The default value used is 1M. The value required to
run the samples is between 128K and 32M.

■ -resume

Restores the VM state from the previously saved EEPROM image and continues
VM execution. When -resume is specified, other options such as -ramsize and
-e2psize are ignored and the corresponding values are obtained from the
EEPROM image. The range is 256 bytes to 8K.
154 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ -version

Displays version information.

■ -Xname=value

Sets a single configuration property such as:
-Xmyproperty=myvalue

■ -exactlogger

Displays only the log messages that match the level set by the -loggerlevel
option.

converter.bat Command
The Converter generates SIO proxy for the CAP file and adds it to the JAR created by
the Normalizer. The CAP files are not changed by the Converter.

When the Normalizer is run, it automatically calls the Converter. A developer only
needs to run the Converter as a separate operation when the Normalizer is not run.
The command line interface for running the Converter takes one of the following
forms:

converter.bat options package_name package_aid major_version.minor_version

or

converter.bat -config filename

Use the -config subcommand and the associated file to provide all options and
parameters to the Converter.

converter Command Options
Use the following converter command options to specify input files, an export
path, an export map, names, and output directories:

■ -classdir root- directory-of-class-hierarchy

Specifies the root directory where the Converter looks for classes.

■ -i

Specifies support the 32-bit integer type.

■ -exportpath list-of-directories

Specifies the root directories where the Converter looks for export files.
Appendix C Development Kit Tool Commands 155

■ -exportmap

Uses the token mapping from the pre-defined export file of the package being
converted. The converter will look for the export file in the exportpath.

■ -applet AID class-name

Sets the applet AID and the class that defines the install method for the applet.

■ -d root-directory-for-output

Specifies the root directories where the Converter outputs the files.

■ -out [CAP] [EXP] [JCA]

Specifies that the Converter output the CAP file, and/or the JCA file, and/or the
EXP export file.

■ -V (or -version)

Displays the Converter version number.

■ -v (or -verbose)

Enables verbose output.

■ -help

Displays the contents of this table.

■ -nowarn

Instructs the Converter to not report warning messages.

■ -mask

Identifies this package is used for a mask. Restrictions on native methods are
relaxed.

■ -debug

Enables generation of debugging information.

■ -nobanner

Suppresses standard output messages.

■ -noverify

Turns off verification. Verification is default.

■ -sign

Signs the output CAP file.

■ -keystore keystore

Keystore to use in signing.

■ -storepass <storepass>

Keystore password.

■ -alias alias
156 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Keystore alias to use in signing.

■ -passkey passkey

Alias password.

debugproxy.bat Command
Use the Debugger tool’s functionality, by starting the debugproxy
(debugproxy.bat), attaching a Java technology enabled IDE to it, and then starting
cjcre with the -debugger option. This tool is located in the
JC_CONNECTED_HOME\bin directory. See Chapter 11 for detailed information
about the Debugger tool.

The Debugger is run from the command line using the following syntax:

debugproxy.bat options filelocation

When starting debugproxy, include the -c (or --classpath) option in the
command to specify the path of the class files to be debugged. The debugproxy needs
to know the location of class files being debugged.

The following is an example of a command that starts debugproxy and specifies
myapp.war as the location of the class files to be debugged:

debugproxy.bat -c myapp.war

installer.bat Command
Use the installer.bat command to run the Off-Card installer. The Installer is a
command-line tool that performs various card-management tasks such as loading or
unloading an application, creating instances, and listing available applications. This
tool is located in the JC_CONNECTED_HOME\bin directory. See Chapter 8 for
detailed information about the Installer tool.

The Off-Card installer is run from the command line using the following syntax:

installer.bat subcommand [options] [arguments]

Each subcommand can take one or more options or arguments that must follow the
subcommand but can be in any order. Some options might require a value.
Command-line arguments are not bound to any particular option.
Appendix C Development Kit Tool Commands 157

Subcommands for the Off-Card installer include the following:

■ load - Loads a specified application-module or library file.

■ create - Creates an instance of a web application from a specified module with
specified context.

■ delete - Deletes an instance that was created by the create subcommand.

■ unload - Unloads (removes) the given application-module (or) library from the
card.

■ list - Displays summary (or) detailed information about application-modules,
instances, and libraries.

■ help - Displays usage information details for individual installer sub-commands.

load Subcommand
The load subcommand can have one or more options and arguments.

load Options
Options must follow the subcommand on the command line. Valid load options
include the following:

■ -c (or --cardmanager) oncard installer-url

Specifies the location of the on-card installer where oncard installer-url represents
the complete URL of the on-card installer.

■ -n (or --name) module-or-library-name

Specifies the module name on the card, where module-or-library-name represents
the name of the module or library.

■ -p (or --password) password

Optional. Used when authentication is required. Specifies the password for the
user set by the --user or -u subcommand, where password represents the
required user password.

■ -s (or --signature) signature-file

Specifies the name of the properties file that contains the BASE64 encoded
certificate and signature, where signature-file represents the file name. This file is a
simple properties file setting the following properties:

■ signature=base64-encoded-signature

■ certificate=certificate-to-validate-the-module-and-digest

■ -t (or --type) file-type
158 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Specifies the type of file being loaded, where file-type represents one of the
following values:

■ web

■ classic-lib

■ classic-applet

■ extension-lib

■ extended-applet

■ -u (or --user) user-id

Optional. Used if authentication is required to access the card manager, where
user-id represents the user name.

load Arguments
The load subcommand must include the application-module or library file name as
an argument following the appropriate options.

load Subcommand Format
installer.bat load -c oncard installer-url [-s signature-file] \

-t file-type -n module-or-library-name\
[-v] [-u user-id -p password] \
application-module (or library-file)

load Subcommand Example
The following is an example of the installer load subcommand:

installer.bat load -c http://localhost:8019/cardmanager \
-s mysig.properties -n calc -t web Calculator.war

create Subcommand
The create subcommand can have one or more options but has no arguments.
Appendix C Development Kit Tool Commands 159

create Options
Options must follow the subcommand on the command line. Valid create options
include the following:

■ -a (or --applet) applet-name-or-id

Specifies the name of the applet loaded by load command, where applet-name-or-id
represents the applet name.

■ -c (or --cardmanager) oncard installer-url

Specifies the location of the on-card installer, where on-card installer url represents
the complete URL.

■ -d (or--data) install-parameters

Optional. Specifies the parameters (printable hex string) that will be passed to the
install method of a classic or extended applet.

■ -i (or --instance) instance-name

For web applications, the context name is used to create the web application. If
none is specified, then the default Web-Context-Path from JCRD is used.

For Applet applications, this is the instance id for applet. If none specified, then a
new instance id is created based on the aid of that applet.

■ -n (or --name) module-or-library-name

The option must include the module-or-library-name. module-or-library-name
represents the name of the module or library loaded by the load command.

■ -p (or --password) password

Optional. Used when authentication is required. Sets the password for the user
specified by the --user or -u subcommand.

■ -u (or --user) user-id

Optional. If authentication is required to access the card manager, the user-id
represents the user name.

create Arguments
None

create Subcommand Format
installer.bat create -c oncard installer-url -n module-or-library-name \

[-a applet-name-or-id] [-d install-parameters][-i instance-name] \

[-v] [-u user-id -p password]
160 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

create Subcommand Example
The following is an example of the installer create subcommand:

installer.bat create -c http://localhost:8019/cardmanager -n calc \

-i /MyCalc

delete Subcommand
The delete subcommand can have one or more options but no arguments.

delete Options
Options must follow the subcommand on the command line. Valid delete options
include the following:

■ -c (or --cardmanager) oncardinstaller-url

Specifies the location of the on-card installer, where oncardinstaller-url represents
the complete URL.

■ -i name (or --instance name) or -i name;name1;name2;...
(or --instance name;name1;name2;...)

Instance name of the application or multiple instances of applications that need to
be deleted, where name represents the instance name of the application.

■ -p (or --password) password

Optional. Used when authentication is required. password is for the user specified
by either the --user or -u subcommand.

■ -u (or --user) user-id

Optional. Used if authentication is required to access the card manager. user-id
represents the user name.

delete Arguments
None

delete Subcommand Format
installer.bat delete -c oncardinstaller-url -i instance-name \

[-u user-id -p password]
Appendix C Development Kit Tool Commands 161

delete Subcommand Example
The following is an example of the installer create subcommand:

installer.bat delete -c http://localhost:8019/cardmanager -i /MyCalc

unload Subcommand
The unload subcommand can have one or more options but no arguments.

unload Options
Options must follow the subcommand on the command line. Valid unload options
include the following:

■ -c (or --cardmanager) oncardinstaller-url

Specifies the location of the on-card installer, where oncardinstaller-url represents
the complete URL.

■ -n (or --name) module-or-library-name

The option must include the module-or-library-name. module-or-library-name
represents the name of the module or library loaded by the load command.

■ -f (or --force)

(Optional) Forces an attempt to delete any instances before unloading.

■ -p (or --password) password

Optional. Used when authentication is required. password is for the user specified
by either the --user or -u subcommand.

■ -u (or --user) user-id

Optional. Used if authentication is required to access the card manager. user-id
represents the user name.

unload Arguments
None

unload Subcommand Format
installer.bat unload -c oncardinstaller-url -n module-or-library-name \

[-f] [-u user-id -p password]
162 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

unload Subcommand Example
The following is an example of the installer unload subcommand:

installer.bat unload -c http://localhost:8019/cardmanager -n calc

list Subcommand
The list subcommand can have one or more options but no arguments.

list Options
Options must follow the subcommand on the command line. Valid list options
include the following:

■ -c (or --cardmanager) oncardinstaller-url

Specifies the location of the on-card installer, where oncardinstaller-url represents
the complete URL.

■ -d (or --detailed)

Optional. Displays complete details of the application-modules, instances, and
libraries.

■ -p (or --password) password

Optional. Used when authentication is required. password is for the user specified
by either the --user or -u subcommand.

■ -u (or --user) user-id

Optional. Used if authentication is required to access the card manager. user-id
represents the user name.

list Arguments
None

list Subcommand Format
installer.bat list -c oncardinstaller-url [-d] [-v] [-u user-id -p password]
Appendix C Development Kit Tool Commands 163

list Subcommand Example
The following is an example of the installer list subcommand that displays
summary information about application-modules, instances, and, libraries:

installer.bat list -c http://localhost:8019/cardmanager

The following is an example of the installer list subcommand that displays detailed
information about application-modules, instances, and, libraries.

installer.bat list -d -c http://localhost:8019/cardmanager

help Subcommand
Causes the installer to display summary or detailed information about one or more
installer subcommands.

help Subcommand Options
There are no options, but the help subcommand accepts a topic attribute of a specific
subcommand name for which detailed information is displayed.

help Subcommand Format
The following is an example of the help subcommand format:

installer.bat help subcommand

help Subcommand Example
The following is an example of the help subcommand:

installer.bat help list

javacardc.bat Command
The Java Card 3 platform Compiler tool (javacardc.bat) is used by developers to
compile the source code of Java Card 3 platform applications outside of an IDE. See
Chapter 6 for detailed information about the Compiler tool.
164 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

The following is an example of the Compiler tool command format:

javacardc.bat [options] [sourcefiles] [@list_files]

In the format example:

■ options - standard javac options,

■ sourcefiles - .java files to be compiled

■ @list_files - plain text file containing a list of all java files that need to be compiled

Compiler Tool Options
In addition to the following Java Card 3 platform specific options, all standard javac
options for JDK 1.6 can be used:

■ -g

Generate all debugging info.

■ -g:none

Generate no debugging info.

■ -g:{lines,vars,source}

Generate only some debugging info.

■ -nowarn

Generate no warnings.

■ -verbose

Output messages about what the compiler is doing.

■ -deprecation

Output source locations where deprecated APIs are used.

■ -classpath path

Specify where to find user class files and annotation processors.

■ -cp path

Specify where to find user class files and annotation processors.

■ -sourcepath path

Specify where to find input source files.

■ -bootclasspath path

Override location of bootstrap class files.

■ -extdirs dirs

Override location of installed extensions.
Appendix C Development Kit Tool Commands 165

■ -endorseddirs dirs

Override location of endorsed standards path.

■ -proc:{none,only}

Control whether annotation processing and/or compilation is done.

■ -processor class1[,class2,class3...]

Names of the annotation processors to run; bypasses default discovery process.

■ -processorpath path

Specify where to find annotation processors.

■ -d directory

Specify where to place generated class files.

■ -s directory

Specify where to place generated source files.

■ -implicit:{none,class}

Specify whether or not to generate class files for implicitly referenced files.

■ -encoding encoding

Specify character encoding used by source files.

■ -source release

Provide source compatibility with specified release.

■ -target release

Generate class files for specific VM version.

■ -version

Version information.

■ -help

Print a synopsis of standard options.

■ -Akey[=value]

Options to pass to annotation processors.

■ -X

Print a synopsis of nonstandard options.

■ -Jflag

Pass flag directly to the runtime system.
166 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

normalizer.bat Command
Use the normalizer.bat command to run the Normalizer tool to generate application
modules from applets created for previous version of the Java Card platform. The
output from the tool is a classic module that contains the class files, the CAP
components of the CAP file, SIO proxies for classic SIOs (if required), and associated
classic application descriptors. The input to the tool must be classic CAP files and
associated EXP files. If the input files are not classic CAP files, the normalization will
fail.

Assuming that JC_CONNECTED_HOME\bin is on your path, use the following
syntax to run the Normalizer:

normalizer.bat subcommand [options]

A subcommand must be the first argument on the command line after the
normalizer.bat command. Valid subcommands for the normalizer.bat
command can be any one of the following:

■ normalize - Creates package class files.

■ copyright - Displays detailed copyright notice.

There are no options for the copyright subcommand.

■ help - Displays information about the Normalizer command.

normalize Subcommand and Options
The normalize subcommand creates the package class files. Options are used to
specify input files, export paths, export file names, and output directories.

■ -i (or --in) filename

Specifies the input CAP file name.

■ -p (or --exportpath) path

Specifies the path of the export files used by the tool.

■ -o (or --out) directory

(Optional) This the default setting and does not have to be explicitly set. Specifies
the output directory that contains the export file.

normalize Subcommand Format
normalizer.bat normalize --in file --out directory
Appendix C Development Kit Tool Commands 167

normalize Subcommand Example
The following is an example of the normalize normalize subcommand:

normalizer.bat normalize -i myCAP.cap

help Subcommand and Options
Options are used to display summary information about the Normalizer
subcommands and specific information about individual Normalizer sub-commands.

Summary Help Option
The following command displays summary help about the Normalizer tool:

normalizer.bat help

normalize Help Option
The following command displays help about the normalize subcommand:

normalizer.bat help normalize

packager.bat Command
Use the packager.bat command to run the Packager tool for creating signature
information from application modules and for validating application modules. The
Packager tool is located at JC_CONNECTED_HOME\bin. See Chapter 7 for detailed
information about the Packager tool.

Assuming that JC_CONNECTED_HOME\bin is on your path, use the following
syntax to run the packager:

packager.bat subcommand [options] module-or-folder

A subcommand must be the first argument on the command line after the
packager.bat command. Valid subcommands for the packager.bat command can
be any one of the following:

■ create - Creates the application module from given module folder or file.
168 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Can have one or more options. See “create Subcommand and Options” on
page 169 for the list of valid options.

■ validate - Validates a specified application module.

Can have one option. See “validate Subcommand” on page 171 for the list of
valid options.

■ copyright - Displays detailed copyright notice.

■ help - Displays usage information.

Use help sub-command to get more details on each sub-command

For example, to display detailed help about the create sub-command:

$>packager.bat help create

create Subcommand and Options
Options must follow the subcommand on the command line. Valid create
subcommand options are as follows:

■ -A (or --alias) alias

Application signing attribute, where alias is the name used to retrieve the key from
the keystore.

■ -c (or --compress)

(Optional) If specified, the Packager tool compresses the output Java Card 3
platform application with a deflate algorithm. If not specified, the Packager creates
an uncompressed JAR file.

■ -e (or --exportpath)

(Optional) If specified, sets the export files path. System’s api_export files are
implicitely loaded.

■ -f (or --force)

(Optional) If specified, descriptors or application module assembly problems are
automatically corrected when possible.

■ -K (or --keystore) keystore-file

Application signing attribute, where keystore-file is the path and filename where
private keys are stored. A key utility such as the JDK keytool must be used to
create and maintain this file.

■ -n (or --nowarn)

Suppress the warning messages.

■ -o (or --out) file-name

Where file-name specifies the name of the output file.
Appendix C Development Kit Tool Commands 169

■ -p (or --packageaid)

(Optional) If specified, sets the package AID in //aid/<RID>/<PIX> format for
classic-lib. Ignored if type is not classic-lib.

■ -P (or --passkey) key-password

Application signing attribute. Where key-password is the password for the private
key.

■ -s (or --sign)

Specifies that the Packager sign the application. If --sign is specified, --
keystore keystore-file, --storepass keystore-password,
--passkey key-password, and --alias alias are required.

■ -S (or --storepass) keystore-password

Application signing attribute, where keystore-password is the password for the
keystore.

■ -t (or --type) file-type

Where file-type is one of the following:

■ web (default)

■ classic-lib

■ classic-applet

■ extension-lib

■ extended-applet

create Subcommand Format
packager.bat create --out file-name [--type file-type] \

[--exportpath path-of-export-files] \
[--packageaid package-AID-for-classic-lib] \
[--sign --storepass keystore-password --passkey key-password \
--alias alias] [--compress] [--force] [--nowarn] \
module-or-folder

create Subcommand Example
The following is an example of the packager create subcommand:

packager.bat create -o mymodule.jar -t web -c c:\mymodulefolder
170 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

validate Subcommand
The validate subcommand has a single option -t (or --type) that specifies the type
of application module to be validated.

validate Subcommand Format
packager.bat validate [--type web | classic-lib | classic-applet | \

extension-lib | extended-applet] \

module-file-name (or module-directory-name)

validate Subcommand Example
The following is an example of the packager validate subcommand:

packager.bat validate -t web myapp.war

copyright Subcommand
There are no options for the copyright subcommand.

copyright Subcommand Format
The following is an example of the copyright subcommand format:

packager.bat copyright

copyright Subcommand Example
The following is an example of the copyright subcommand:

packager.bat copyright

help Subcommand
There are no options, but the help subcommand accepts a topic attribute of a specific
subcommand name for which detailed information is displayed.
Appendix C Development Kit Tool Commands 171

help Subcommand Format
The following is an example of the help subcommand format:

packager.bat help subcommand topic

help Subcommand Example
The following is an example of the help subcommand:

packager.bat help validate

romizer.bat Command
Use the ROMizer tool to create a ROM image used in building a custom Java Card
runtime environment (cjcre.exe). See Chapter 13 for detailed information about
the ROMizer tool.

Use the following command format to run the ROMizer tool:

romizer.bat [options] api jar file path

Options that can be used in the romizer.bat command include:

■ -o (or) --out out-file

Optional. Output file name. Default is ROMJava.c

■ -e (or) --e2pfile eeprom-file

Optional. File where the initial EEPROM image is stored. Default is
cjcre.eeprom.

■ -a (or) --apps apps-list-file

Optional. The file contains a list of applications in separate lines.

The format of each line in the apps-list-file is:

application-file -t type-of-application -s signature-file -n name

In the previous format example, the following parameters are used:

■ application-file - Absolute (or) relative path of the application file

■ type - One of web, extended-applet, classic-applet, extension-lib or
classic-lib

■ signature-file - Signature file that is the same as the file used by the Installer tool.
172 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

■ name - Name for this application bundle

Examples
romizer.bat --out MyROMJava.c --e2pfile my.eeprom yourapi.jar

romizer.bat ..ıib\api_connected.jar

romizer.bat yourapi.jar

romizer.bat -a myapps.list yourapi.jar

In the example, the contents of myapps.list might be in the form of:

helloworld1.war -t web -s helloworld1.signature -n hello1

helloworld2.eap -t extended-applet -s helloworld2.signature -n hello2
Appendix C Development Kit Tool Commands 173

174 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Glossary

3GPP Third Generation Partnership Project (3GPP) formed by telecommunications
associations to develop 3rd Generation Mobile System specifications for
systems deployed across the GSM market. These specifications are available
on the 3GPP web site.

AID (application
identifier)

defined by ISO 7816, a string used to uniquely identify card applet
applications and certain types of files in card file systems. An AID consists of
two distinct pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX
(proprietary identifier extension). The RID is a resource identifier assigned to
companies by ISO. The PIX identifiers are assigned by companies.

A unique AID is associated with each applet class in an applet application
module. In addition, a unique AID is assigned to each applet instance during
installation. This applet instance AID is used by an off-card client to select
the applet instance for APDU communication sessions.

Applet instance URIs are constructed from their applet instance AID using
the "aid" registry-based namespace authority as follows:

//aid/<RID>/<PIX>

where <RID> (resource identifier) and <PIX> (proprietary identifier
extension) are components of the AID.

Ant a platform-independent software tool written in the Java programming
language that is used for automating build processes.

APDU an acronym for Application Protocol Data Unit as defined by ISO 7816-4
specifications. ISO 7816-4 defines the application protocol data unit (APDU)
protocol as an application-level protocol between a smart card and an
application on the device. There are two types of APDU messages, command
APDUs and response APDUs. For detailed information on the APDU
protocol see the ISO 7816-4 specifications.

APDU-based application
environment

consists of all the functionalities and system services available to applet
applications, such as the services provided by the applet container.
175

API an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

applet a stateless software component that can only execute in a container on the
client platform. Within the context of this document, a Java Card applet,
which is the basic component of applet-based applications and which runs
in the APDU application environment.

applet application an application that consists of one or more applets.

applet container contains applet-based applications and manages their lifecycles through
the applet framework API. Also provides the communication services over
which APDU commands and responses are sent.

applet framework an API that enables applet applications to be built.

application descriptor see descriptor.

application developer The producer of an application. The output of an application developer is a
set of application classes and resources, and supporting libraries and files
for the application. The application developer is typically an application
domain expert. The developer is required to be aware of the application
environment and its consequences when programming, including
concurrency considerations, and create the application accordingly.

application group a set of one or more applications executing in a common group context.

application URI a URI uniquely identifying an application instance on the platform.

atomicity a property of transactions that requires all operations of a transaction be
performed successfully for the transaction to be considered complete. If all
of a transaction’s operations cannot be performed, none of them can be
performed.

classic applet applets with the same capabilities as those in previous versions of the
Java Card platform and in the Classic Edition.

Classic Edition one of the two editions in the Java Card 3 Platform. The Classic Edition is
based on an evolution of the Java Card Platform, Version 2.2.2 and is
backward compatible with it, targeting resource-constrained devices that
solely support applet-based applications.

Connected Edition one of the two editions in the Java Card 3 Platform. The Connected Edition
has a significantly enhanced runtime environment and a new virtual
machine. It includes new network-oriented features, such as support for
web applications, including the Java™ Servlet APIs, and also support
for applets with extended and advanced capabilities. An application
written for or an implementation of the Connected Edition may use
features found in the Classic Edition.
176 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Converter a peice of software that preprocesses all of the Java programming language
class files of a classic applet application that make up a package, and
converts the package into a standalone classic applet application module
distribution format (CAP file). The Converter also produces an export file.

create indicates that a web application of a module or an application group, that
was loaded by load, needs to be created. As a result, the required application
is accessible through some Web-Context root.

delete indicates that a web application instance created by create needs to be
deleted.

ETSI the European Telecommunications Standards Institute (ETSI) is an official
European Standards Organization that develops and publishes standards for
information and communications technologies. Additional information is
available on the ETSI web site.

descriptor a document that describes the configuration and deployment information of
an application. A deployment descriptor conveys the elements and
configuration information of an application between application developers,
application assemblers, and deployers. A runtime descriptor describes the
configuration and deployment information of an application that are specific
to an operating environment to which the application is to be deployed.

distribution format structure and encoding of a distribution or deployment unit intended for
public distribution.

extended applet an applet with extended and advanced capabilities (compared to a classic
applet) such as the capabilities to manipulate String objects and open
network connections.

garbage collection the process by which dynamically allocated storage is automatically
reclaimed during the execution of a program.

global array an applet environment array objects accessible from any context.

global authentication the scope of a user authentication that can be tracked globally (card-wide).
Global authentication is restricted to card-holder-users. Authorization to
access resources protected by a globally authenticated card-holder-user
identity is granted to all users.

GlobalPlatform (GP) an international association of companies and organizations that establish
and maintain interoperable specifications for single and multi-application
smart cards, acceptance devices, and infrastructure systems. Additional
information is available on the GlobalPlatform web site.

group context protected object space associated with each application group and Java Card
RE. All objects owned by an application belong to the context of the
application group.
177

ISO the International Standards Organization (ISO) is a non-governmental
organization of national standards institutes that develops and publishes
international standards for both public and private sectors. Additional
information is available on the ISO web site.

JAR file an acronym for Java Archive file, which is a file format used for aggregating
and compressing many files into one.

Java Card Runtime
Environment

consists of the Java Card virtual machine and the associated native methods.

Java Card Virtual
Machine (Java Card VM)

a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an
engine that loads Java class files and executes them with a particular set of
semantics.

JDK software an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software
is available for a variety of operating systems, for example Sun
Microsystems Solaris OS and Microsoft Windows.

KVM a virtual machine for small devices, the KVM is derived from the Java
virtual machine (JVM) but is written in the C programming language and
has a smaller footprint than the JVM. The KVM supports a subset of the JVM
features.

list indicates that the client is requesting information about all loaded
application groups and instances.

load indicates that a module or an application group needs to be deployed onto
the card but not yet made accessible.

mask production
(masking)

refers to embedding the Java Card virtual machine, runtime environment,
and applications in the read-only memory of a smart card during
manufacture.

mode (communication) designates the type or protocol of communication (HTTPS, SSL/TLS, SIO...)
and the mode of operation (client or server) that characterizes a
communication endpoint.

module a unit of distribution and deployment of component applications. Modules
or component applications are individual applications (standalone) and can
be assembled into application groups. Applications that rely on a single
component application can be deployed directly as standalone application
modules in addition to deployment as application groups.

MMC MultiMediaCard (MMC) is a flash memory card standard developed and
published by the MultiMediaCard Association.

namespace a set of names in which all names are unique.
178 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

non-volatile memory memory that is expected to retain its contents between card tear and power
up events or across a reset event on the smart card device.

normalization (classic
applet)

the process of transforming and repackaging a Java application packaged for
the Java Card Platform, Version 2.2.2, for deployment on both the Java Card
3 Platform, Connected Edition and the Java Card 3 Platform, Classic Edition.

normalization (URI) the process of removing unnecessary "." and ".." segments from the path
component of a hierarchical URI.

Normalizer in the Connected Edition, a backwards compatibility tool that allows Java
applications programmed for the Java Card Platform, Version 2.2.2, to be
deployed on both the Java Card 3 Platform, Connected Edition and on the
Java Card 3 Platform, Classic Edition. It also allows Java applications
packaged for Version 2.2.2 to be transformed through the normalization
process and then repackaged for deployment on both the Connected and
Classic Editions.

In the Classic Edition, a compatibility tool that enables developers to
generate application modules for Java Card 3 platform classic applets
they are creating or from classic applets created for previous versions of
the Java Card platform. These application modules contain CAP files
and are downloadable on both the Java Card 3 platform Classic Edition
and Connected Edition smart cards.

off-card client see off-card client application.

off-card client
application

an application that is not resident on the card, but runs at the request of a
user’s actions.

off-card installer the off-card application that transmits the application and library
executables to the card manager application running on the card.

package a namespace within the Java programming language that can have classes
and interfaces.

platform protection
domain

a set of permissions granted to an application or group of applications by the
platform security policy. A platform protection domain is defined by two
sets of permissions: a set of included permissions that are granted and a set
of excluded permissions that are denied and can never be granted.

platform security policy the permission-based security policy that maps application models to sets of
permissions granted to applications implementing these application models.
For each of the application models, the platform security policy guarantees
the consistency and integrity of the applications implementing the
application model.

protected content see protected resource.

protected resource an application or system resource that is protected by an access control
mechanism.
179

protection domain a set of permissions granted to an application or group of applications.

RAM (random access
memory)

temporary working space for storing and modifying data. RAM is
non-persistent memory; that is, the information content is not preserved
when power is removed from the memory cell. RAM can be accessed an
unlimited number of times and none of the restrictions of EEPROM apply.

reference
implementation

a fully functional and compatible implementation of a given technology. It
enables developers to build prototypes of applications based on the
technology.

reference applications blue print-like applications that demonstrate the interactions between
various applications on the card using advanced features such as SIO and
events.

remote user an user whose identity may be assumed by a remote entity, such as a remote
card administrator.

remotely accessible web
application

an application that is not expected to interact with the card holder but with
other-users, potentially remote.

restartable task an object implementing the Runnable interface that has been registered for
recurrent execution over card sessions. A task executes in its own thread.

restartable task registry a Java Card RE facility that is used for registering tasks for recurrent
execution over card sessions.

security requirements the required security characteristics for a particular secure communication
being established by either an application or by the web container on behalf
of a web application.

server application an on-card application that provides a service to its clients.

service a shareable interface object that a server application uses to provide a set of
well-defined functionalities to its clients.

service facility a Java Card RE facility (or subsystem) that is used for inter-application
communications.

service factory an object that the Java Card RE invokes to create a service - on behalf of the
server application that registered that service - for a client application that
looked up the service.

service registry the core component of the service facility. The service facility is used for
registering and looking up services.

service URI a URI that uniquely identifies a service provided by a server application.

servlet a web application component, managed by a container, that generates
dynamic web content and that runs in the web application environment.

servlet container see web application container.
180 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

servlet context a container-managed object that defines a servlet’s view of the web
application within which the servlet is running. A servlet context is rooted at
a known path within a web server: a context path.

servlet mapping a servlet definition that is associated by a servlet container with a URL path
pattern. All requests to that path pattern are handled by the servlet
associated with the servlet definition. See Java Servlet Specification, Connected
Edition.

shareable interface an interface that defines a set of shared methods. These interface methods
can be invoked from an application in one group context when the object
implementing them is owned by an application in another group context.

shareable interface object
(SIO)

an object that implements the shareable interface.

shareable interface
object-based service

see service.

smart card a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe
cards, smart cards carry both processing power and information. They do
not require access to remote databases at the time of a transaction.

SSL Secure Socket Layer (SSL), like the later TLS protocol, is a cryptographic
protocol for securely transmitting documents by using a two key
cryptographic system (a public key and a private key) to encrypt and
decrypt data.

terminal is typically a computer in its own right with an interface which connects
with a smart card to exchange and process data.

thread the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended
or destroyed.

thread’s active context when an object instance method is invoked, the owning context of the object
becomes the currently active context for that particular thread of execution.
Synonymous with currently active context.

transaction an atomic operation in which the developer defines the extent of the
operation by indicating in the program code the beginning and end of the
transaction.

transaction facility a Java Card RE facility that enables an application to complete a single
logical operation on application data atomically, consistently and durably
within a transaction.
181

transient object the state of transient objects do not persist from one card session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

transferable classes classes whose instances can have their ownership transferred to a context
different from their currently owning context. Transferable classes are of two
types:

Implicitly transferable classes - Classes whose instances are not bound to
any context (group contexts or Java Card RE context) and can, therefore, be
passed and shared between contexts without any firewall restrictions.
Examples are Boolean and literal String objects.

Explicitly transferable classes - Classes whose instances must have their
ownership explicitly transferred to another application’s group context in
order to be accessible to that other application. Examples are arrays and
newly created String objects.

transfer of ownership a Java Card RE facility that allows for an application to transfer the
ownership of objects it owns to an other application. Only instances of
transferable classes can have their ownership transferred.

trusted client an on-card or off-card application client that an on-card application trusts on
the basis of credentials presented by the client.

trusted client credentials credentials that an on-card application uses to ascertain the identity of
clients it trusts.

TLS Transport Layer Security (TLS), like the earlier SSL protocol, is a
cryptographic protocol for securely transmitting documents either by
endpoint authentication of the server or by mutual authentication of the
server and the client.

unload indicates that the module or application group that was loaded by load
needs to be removed completely from the card. By default, if there are some
instance(s) created, then unload will fail. Optional -f (or –force) will attempt
to delete all instances before unloading.

uniform resource
identifier (URI)

a compact string of characters used to identify or name an abstract or
physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both. See RFC 3986 for
more information.

uniform resource locator
(URL)

a compact string representation used to locate resources available via
network protocols or other protocols. Once the resource represented by a
URL has been accessed, various operations may be performed on that
resource. See RFC 1738 for more information. A URL is a type of uniform
resource identifier (URI).
182 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

USB Universal Serial Bus (USB) is a serial bus specification developed and
published by the USB Implementers Forum that when implemented enables
external devices such as flash drives, PDAs, and printers to connect to a host
controller.

verification a process performed on an application or library executable that ensures that
the binary representation of the application or library is structurally correct.

volatile memory memory that is not expected to retain its contents between card tear and
power up events or across a reset event on the smart card device.

volatile object an object that is ideally suited to be stored in volatile memory. This type of
object is intended for a short-lived object or an object which requires
frequent updates. A volatile object is garbage collected on card tear (or
reset).

web application a collection of servlets, HTML documents, and other web resources that
might include image files, compressed archives, and other data. A web
application is packaged into a web application archive.

All compatible servlet containers must accept a web application and perform
a deployment of its contents into their runtime. This may mean that a
container can run the application directly from a web application archive file
or it may mean that it will move the contents of a web application into the
appropriate locations for that particular container. See Java Servlet
Specification, Connected Edition.

web application archive the physical representation of a web application module. A single file that
contains all of the components of a web application. This archive file is
created by using standard JAR file tools, which allow any or all of the web
components to be signed.

A web application archive file is identified by the .war extension and is
often referred to as a WAR file. A new extension is used instead of .jar
because that extension is reserved for files which contain a set of class files
and that can be placed in the classpath. As the contents of a web application
archive are not suitable for such use, a new extension was required. See Java
Servlet Specification, Connected Edition.

web application
container

contains and manages web applications and their components (for example,
servlets) through their lifecycle. Also provides the network services over
which HTTP requests and responses are sent and manages security of web
applications.

web application
environment

in addition to the Java Card RE, consists of all the functionalities and system
services available to web applications, such as the services provided by the
web application container.

web client an off-card entity that requests services from an on-card web application. A
typical example is a web browser.
183

184 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

Index
A
AID (application identifier), 175
APDU, 103

script file commands, 106
script files, 105

APDU I/O, xix, 125, 129
APDU tool

apdutool.bat, 103
command line options, 104
command line syntax, 103
description, 103
running, 103

APDU-based application environment, 175
ApduIOCardAccessor, 128
apdutool.bat, 103
API, 176
applet, 176
applet application, 176
applet container, 176
applet framework, 176
application descriptor, 176
application developer, 176
application group, 176
application module formats, 139
Application Protocol Data Unit, 103
application URI, 176
architecture

Debugger tool, 107

B
building

extended applet samples, 45

C
C Java Card Runtime Environment, 59
CAP file, 141

suppressing output, 99
card installer

off-card Installer tool, 77
on-card installer, 77
use case, 89

CardAccessor, 127
cjcre.exe, 7

starting, 59
cjcre.exe command, 153
classic applet, 176
classic applet application module

distribution format, 141
Classic Edition, 176
classic library

distribution format, 143
clientlib package, 125
com.sun.javacard.javacard.clientlib, 127
com.sun.javacard.javacard.rmiclientlib, 126
command configuration file, 101
command line examples

Compiler tool, 65
command line options

APDU tool, 104
command line syntax

Compiler tool, 64
Packager tool, 69
185

Compiler tool
command line examples, 65
command line options, 63
command line syntax, 64
description, 63
running, 63
unsupported features, 63

configuring
Debugger tool, 109

Connected Edition, 176
Converter, 177
Converter tool

command configuration file, 101
creating a debug.msk file, 97
described, 95
input file naming conventions, 98
invoking the off-card verifier, 98
output, 95
output file naming conventions, 99

converting
Java class files, 95

D
debug.msk file

creating, 97
Debugger tool

architecture, 107
configuring, 109
description, 107
running, 108

demonstrations
logical channels demo, 43

description
Compiler tool, 63
Debugger tool, 107
Installer tool, 79
javacardc.bat, 63
on-card installer, 77
reference_apps samples, 48
samples, 21
web samples, 23

developing applications, 17
Development Kit

additional software (required), 8
bundle, 6
Connected Editon features, 4
installation, 11

Normalizer tool, 91
samples, 8
system requirements, 8
tools, 7
uninstalling, 16

directory contents
reference_apps, 48

distribution format, 177
classic applet application module, 141
classic library, 143
extended applet application module, 141
extension library, 142

E
EEPROM, 59
export file

loading, 97
export map

specifying, 96
extended applet, 177
extended applet application module

distribution format, 141
extended applet samples

building, 45
extended_applets samples, 45
extension library

distribution format, 142

F
functionality

Installer tool, 79
on-card installer, 78

I
input file

naming conventions for the Converter tool, 98
input files

suppressing verification, 98
verifying, 98

installation
Java Communications API, 133

installation of Development Kit, 11
Installer tool, 79

description, 79
functionality, 79
installer.bat, 79
186 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

running, 79
subcommands, 79

installer.bat, 79

J
jarsigner, 69
Java Card 3 platform

bundle, 6
developing applications, 17
Reference Implementation, 7

Java Card RMI client
reference implementation, 125
remote stub object, 126
supported framework package, 125
supported reference implementation

package, 125
Java Card Runtime Environment, 59
Java Card runtime environment

starting, 59
Java Card TCK, 9
Java Communications API

installing, 133
Java Debug Wire Protocol, 108
javac, 63
javacardc.bat, 18, 63

description, 63
JCCardObjectFactory, 127
JCCardProxyFactory, 127
JCRemoteRefImpl, 127
JCRMIConnect, 127
JDK compiler, 63
JDWP, 108

K
KDWP, 108
KVM Debug Wire Protocol, 108

L
library formats, 139
loading applications, 77

M
managing applications, 77

N
Normalizer tool, 91
normalizer.bat, 91

O
off-card verifier

invoking, 98
suppressing verification, 98

on-card installer
description, 77
functionality, 78
operation, 78

operation
on-card installer, 78
Packager tool, 67

options
Packager tool, 67

output file
naming conventions for the Converter tool, 99

output files
suppressing verification, 98
verifying, 98

P
Packager tool

command line syntax, 69
jarsigner, 69
operation, 67
options, 67
output conditions, 68
packager.bat, 69
signing a module, 69
subcommands, 69

packager.bat, 69
protected content, 179

R
Reference Implementation, 7, 59

cjcre.exe command, 153
starting, 59

reference_apps
directory contents, 48

reference_apps samples, 47
description, 48

reimplementing a package or method, 97
remote stub object, 126
Index 187

RI, 7
RMIC compiler, 126
rmiclientlib package, 125
running

Compiler tool, 63
Debugger tool, 108
Installer tool, 79

S
samples, 8

building extended applet, 45
Channels sample, 44
description, 21
extended_applets, 45
reference_apps, 47
reference_apps description, 48
web, 23

script file commands
APDU, 106

script files
APDU, 105

signing a module, 69
starting

cjcre.exe, 59
stub object, remote, 126
subcommands

Installer tool, 79

T
TCK see Java Card TCK
Technology Compatibility Kit see Java Card TCK
thread’s active context, 181
tools, 7

U
uninstalling the Development Kit, 16
use-case

card installer, 89

W
web samples

description, 23
188 Development Kit User’s Guide, Java Card Platform, Connected Edition • May 2009

	Development Kit User’s Guide
	Contents
	Figures
	Tables
	Preface
	I Setup, Samples and Tools
	Introduction
	Platform Architecture
	Development Kit Description
	Connected Edition Features
	Connected Edition Security Model
	Application Models

	Development Kit Contents
	Reference Implementation
	Development KitDevelopment KitTools
	Samples

	System Requirements
	Additional Software
	Java Card TCK

	Installation
	Prerequisites to Installing the Development Kit
	Install and Setup the Development Kit
	Install the Development Kit
	Setting Up the System Variables

	Uninstalling the Development Kit

	Developing Java Card 3 Platform Applications
	Development Steps

	Running the Samples
	General Procedures for Running Samples
	Run Samples from the Command Line
	Accepting an Untrusted Certificate

	Running Web Application Samples
	Running the HelloWorld Sample
	Run HelloWorld

	Running the ContainerManagedAuthentication Sample
	Run ContainerManagedAuthentication

	Running the StaticSecureWebHosting Sample
	Run StaticSecureWebHosting

	Running the DynamicSecureWebHosting Sample
	Run DynamicSecureWebHosting

	Running the GCFClient Sample
	Run GCFClient

	Running the DynamicallyLoadedClasses Sample
	Run DynamicallyLoadedClasses

	Running the Persistence Sample
	Run Persistence

	Running the RestartableTasks Sample
	Run RestartableTasks

	Running the Transactions Sample
	Run Transactions

	Running the SIOFacility Sample
	Run SIOFacility

	Running the EventFacility Sample
	Run EventFacility

	Running the CardHolderAuthorization Sample
	Run CardHolderAuthorization

	Running Classic Applet Samples
	ClassicChannels Sample
	Run the ClassicChannels Sample

	Running Extended Applet Samples
	Description of Extended Applet Samples
	Building the Extended Applet Samples
	Running the HelloWorld Sample
	Run the HelloWorld Sample

	Running the ExtendedChannels Sample
	Run the ExtendedChannels Sample

	Running Reference Application samples
	Description of reference_apps Samples
	Directories and Files in the reference_apps Directory

	Building a Transit Sample Application
	Running the Transit Sample
	Run the Transit Sample

	Starting the Java Card Runtime Environment
	Starting cjcre.exe from the Command Line
	cjcre.exe Command Line Options

	Java Card Runtime Environment Configuration Files
	Adding Proprietary Packages

	Compiling Source Code
	Running the Compiler Tool from the Command Line
	Compiler Tool Options
	Format
	Examples

	Creating and Validating Application Modules
	Packager Operation
	Options
	Basic Packaging Sequence
	Use Cases

	Signing
	Use Cases

	Running the Packager from the Command Line
	create Subcommand
	create Subcommand Options
	create Subcommand Format
	create Subcommand Examples

	validate Subcommand
	validate Subcommand Options
	validate Subcommand Format
	validate Subcommand Example

	copyright Subcommand
	copyright Subcommand Options
	copyright Subcommand Format
	copyright Subcommand Example

	help Subcommand
	help Subcommand Options
	help Subcommand Format
	help Subcommand Example

	Use Cases

	Loading and Managing Applications
	Description of the On-Card Installer
	On-card Installer Operation
	On-card Installer Functionality

	Description of the Installer Tool
	Running the Installer Tool
	load Subcommand
	create Subcommand
	delete Subcommand
	unload Subcommand
	list Subcommand
	help Subcommand

	Card Installer Use-Case
	Load an Application
	Pre-Conditions
	Post-Conditions
	Sequence of Events

	Backwards Compatibility for Classic Applets
	Generating Application Modules From Classic Applets
	Running the Normalizer
	normalize Subcommand
	copyright Subcommand
	help Subcommand

	Converting Class Files to CAP Files
	Specifying an Export Map
	Loading Export Files
	Creating a debug.msk Output File
	Verification of Input and Output Files
	File and Directory Naming Conventions
	Input File Naming Conventions
	Output File Naming Conventions

	Running the Converter
	converter Command Options
	Using a Command Configuration File
	Using Delimiters with Command Line Options

	Using the APDU Tool
	Running the APDU Tool From the Command Line
	Examples of Using the APDU Tool
	Directing Output to the Console
	Directing Output to a File

	Using APDU Script Files

	Debugging Applications
	Debugger Architecture
	Using the Debugger
	Debug a Java Card 3 Platform Application
	Configuring the Debugger

	II Programming With the Development Kit
	Configuring the RI
	Configuring Authenticators
	Creating Custom Protection Domains
	Creating a Custom keystore

	Building the RI From Sources
	Prerequisites to Building the RI
	Contents of JC_CONNECTED_HOME\ src Folder
	Running the ROMizer Tool
	Apps list File Contents
	Example Contents of Apps List File
	Romizer Tool Output

	Building a Custom cjcre.exe
	Preprocessor Symbols to Customize the VM
	Build a Custom RI
	Test the Custom RI

	Programming to the Java Card RMI Client-Side API
	Remote Stub Object
	Java Card RMI Client-Side API
	Package rmiclientlib
	Package clientlib

	Working with APDU I/O
	The APDU I/O API
	APDU I/O Classes and Interfaces
	Exceptions

	Two-interface Card Simulation
	Examples of Use
	To Connect To a Simulator
	To Establish a T=0 Connection To a Card
	javax.comm Package
	To Establish a Connection To a PC/SC-Compatible Card Reader
	To Power Up And Power Down the Card
	To Exchange APDUs
	To Print the APDU

	Generating SSL Keys and Certificates
	SSL and HTTPS Certificates and Keys
	Generating an SSL Certificate

	Application Module and Library Formats
	Web Application Module Format
	Extended Applet Application Module Distribution Format
	Classic Applet Application Module Format
	Extension Library Format
	Classic Library Format

	Installed Directories and Files
	Directories and Files Installed in the src Directory

	Development Kit Tool Commands
	apdutool.bat Command
	cjcre.exe Command
	cjcre.exe Options

	converter.bat Command
	converter Command Options

	debugproxy.bat Command
	installer.bat Command
	load Subcommand
	load Options
	load Arguments
	load Subcommand Format
	load Subcommand Example

	create Subcommand
	create Options
	create Arguments
	create Subcommand Format
	create Subcommand Example

	delete Subcommand
	delete Options
	delete Arguments
	delete Subcommand Format
	delete Subcommand Example

	unload Subcommand
	unload Options
	unload Arguments
	unload Subcommand Format
	unload Subcommand Example

	list Subcommand
	list Options
	list Arguments
	list Subcommand Format
	list Subcommand Example

	help Subcommand
	help Subcommand Options
	help Subcommand Format
	help Subcommand Example

	javacardc.bat Command
	Compiler Tool Options

	normalizer.bat Command
	normalize Subcommand and Options
	normalize Subcommand Format
	normalize Subcommand Example

	help Subcommand and Options
	Summary Help Option
	normalize Help Option

	packager.bat Command
	create Subcommand and Options
	create Subcommand Format
	create Subcommand Example

	validate Subcommand
	validate Subcommand Format
	validate Subcommand Example

	copyright Subcommand
	copyright Subcommand Format
	copyright Subcommand Example

	help Subcommand
	help Subcommand Format
	help Subcommand Example

	romizer.bat Command
	Examples

	Glossary
	Index

