
Replicant and bootloaders

Denis ’GNUtoo’ Carikli

July 30, 2019

Freedom Privacy and Security:

• The Replicant website has a page (https://replicant.us/
freedom-privacy-security-issues.php) that has more
details on freedom, privacy and security issues commonly
found in smartphones.

• That page consists mainly of HTML, its source code is
available in
https://git.replicant.us/replicant/website.git,
and patches are reviewed on the Replicant mailing list.

• The README also has some information on a very easy way
to deploy the website locally to test changes.

https://replicant.us/freedom-privacy-security-issues.php
https://replicant.us/freedom-privacy-security-issues.php
https://git.replicant.us/replicant/website.git

Bootloader?

Here it is Equivalent to:

• The BIOS + GRUB

• UEFI: UEFI can load the Linux kernel directly

Why are bootloader needed on smartphones and tablets?

By itself, the hardware is usually capable of loading and running a
limited amount of code from the internal storage, however most of
the hardware doesn’t even work at boot, including:

• The Display

• The RAM

• The buttons

Bootrom→Bootloader→ Replicant

Samsung devices Bootrom→BL1→s-boot 4.0→Replicant
Applies at least to the following devices:

• Galaxy S2 (I9100)

• Galaxy SIII (I9300)

• Galaxy SIII 4G (I9305)

• Galaxy Note II (N7100)

• Galaxy Note II 4G (N7105)

General nonfree bootloader issues:
The fact that the bootloader is mostly invisible to the user doesn’t
magically make its related freedom issues disapear.
As with all software, it is required for it to be free software in order
to respect users freedom.

Examples of issues:

• As it is able to modify the operating system it’s supposed to
load and execute, and that the code is nonfree, we cannot
give any guarantees that it doesn’t do that. Some BIOS do
that with computrace for instance.
• It could refuses to boot if you changed the software or

hardware.
• Apple’s ipad and iphones?
• BIOS/UEFI with the WiFi card.

• Or loads another extra software you don’t whish.

• Be able to tinker with boot is also important (ways to boot,
security, etc)

Examples of tinkering:

• Adding filesystems (recent ext4).

• Adding dual boot.

• Adding new recovery ways (A/B recovery).

• Having a single bootloader for multiple devices.

• Having a single Android image for multiple devices.

• Fixing hardare security issues when they are found
(rowhammer).

• Getting failed boot logs.

• Automatic testing of Replicant (install from the network, boot
on it).

”Midas”:

• Galaxy SIII (I9300)

• Galaxy SIII 4G (I9305)

• Galaxy Note II (N7100)

• Galaxy Note II 4G (N7105)

Issues found on Midas with BL1→s-boot 4.0→Linux:

• Nonfree BL1 and s-boot

• Doesn’t take the commandline arguments from the boot.img

• Doesn’t support the devicetree

• Initialize the MMU

• Loads and run a second OS (MobiCore) in TrustZone that is
nonfree.

TrustZone

• Has more hardware privileges than the Linux kernel

• Implementing a rootkit in TrustZone is possible[3]

• ”the TEE has [..] monotonic clock that ticks in suspend[2]”

• SOC specific and lacks SOC documentation.

• Discussions on weather free software in TrustZone is desirable
are planned in this conference.

Upstream Linux bootloader requirements
Documentation/arm/Booting:

The MMU must be off.

Instruction cache may be on or off.

Data cache must be off.

MMU on in practice:

• Requires a patch to boot: ”ANDROID: arm: decompressor:
Flush tlb before swiching domain 0 to client mode”

• I spent between several days and a week bisecting the commit
that broke booting between 5.1 and 5.2-rc1 (merges, rebases,
non-compiling commits, etc).

• Not substainable: What happens if in the future new
maintainers don’t have the time or skills to bisect breakages?

• Most of the work on Android 9 is still re-usable on future
devices that would have free software bootloaders.

Sharp Zaurus (SA11x0)

$ l s a rch /arm/boot / compressed /
a t a g s t o f d t . c debug . S e f i −heade r . S
head−sa1100 . S head−x s c a l e . S
l l c h a r w r . S misc . c p i ggy . S
vml inux . l d s . S b ig−end ian . S decompress . c
head . S head−s h a r p s l . S l i b f d t e n v . h
Make f i l e misc . h s t r i n g . c

head-sa1100.S

@ Data cache might be a c t i v e .
@ Be su r e to f l u s h k e r n e l b i n a r y out o f the cache ,
@ whateve r s t a t e i t i s , b e f o r e i t i s tu rned o f f .
@ This i s done by f e t c h i n g through c u r r e n t l y execu t ed
@ memory to be s u r e we h i t the same ca ch e .
b i c r2 , pc , #0x1 f
add r3 , r2 , #0x4000 @ 16 kb i s q u i t e e n o u g h . . .

1 : l d r r0 , [r2] , #32
teq r2 , r3
bne 1b
mcr p15 , 0 , r0 , c7 , c10 , 4 @ d r a i n WB
mcr p15 , 0 , r0 , c7 , c7 , 0 @ f l u s h I & D caches

@ d i s a b l i n g MMU and caches
mrc p15 , 0 , r0 , c1 , c0 , 0 @ read c o n t r o l r eg
b i c r0 , r0 , #0x0d @ c l e a r WB, DC, MMU
b i c r0 , r0 , #0x1000 @ c l e a r I c a ch e
mcr p15 , 0 , r0 , c1 , c0 , 0

In practice Russel King (ARM maintainer):

SA11x0 pre-dates the booting document, which came
about because of the desire to make the kernel less
dependent on the host CPU type. So ”sa11x0 does
it so we can do it” is really not an argument I ever
want to see to justify this kind of stuff.

The booting requirements have been known since at least
2002, some SEVENTEEN years ago, and the prob-
lem was identified as buggy back in 2012. As far as
I can see, nothing has changed.

Entering the kernel with the MMU on and optionally
caches on is an inherently unsafe thing to do. The
kernel would have been placed into RAM via the data
cache, and then we’re trying to execute code - un-
less the caches have been properly cleaned and inval-
idated, there is no guarantee that we’d even reach
any instructions to do our own cache cleaning and
invalidation. So, caches on is utter madness.

MMU on presents a problem: the kernel moves itself
around during decompression - if it happens to move
itself on top of the in-use page tables, then that would
be really bad. There’s another issue as well - if the
page tables are already setup, and we create a differ-
ent mapping for the virtual address range, the only
way to safely switch to that mapping is via a break-
make arrangement, which means we need code to
disable the MMU, flush it. It is not as simple as ”a
few extra instructions to flush TLBs” although that
may work in the majority of cases. Architecturally,
it is wrong.

Things can get even worse - what if the page tables are
located where the kernel writes its own page tables
- modifying the live tables and changing the type of
the entries. Architecturally unpredictable behaviour
may result.

What is written in Documentation/arm/Booting is not
for our fun, it is there to spell out what the kernel
requires to be able to boot reliably on hardware. If
it isn’t followed, then booting a kernel will be unreli-
able.

downstream u-boot port

• No MMU enabled at boot

• Gets the commandline arguments from the boot.img

• Support the devicetree. Even supports modifying it on the fly.

• No display support, but leds are supported

Issues found on Midas with BL1→u-boot→Linux:

• Nonfree and non-redistributable BL1

Licenses:

• Attribution-ShareAlike 3.0 Unported for the two images that
comes from the Freedom Privacy and Security page.

• https://creativecommons.org/licenses/by-sa/4.0/

for the rest.

https://creativecommons.org/licenses/by-sa/4.0/

https://replicant.us/

freedom-privacy-security-issues.php

https://source.android.com/security/

authentication/gatekeeper

https://hackinparis.com/data/slides/2013/

Slidesthomasroth.pdf

https://replicant.us/freedom-privacy-security-issues.php
https://replicant.us/freedom-privacy-security-issues.php
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf
https://hackinparis.com/data/slides/2013/Slidesthomasroth.pdf

